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A B S T R A C T

This paper aims at deriving velocity potential for the regular wave passing through a concentric porous cylinder
system, which has an arbitrary smooth section. The wave interaction with the structures, for instance wave force
on them and wave elevation, are discussed with different sections and wave properties in this study. The effi-
ciency and accuracy of present method was validated by comparing with the semi-analytical method of SBFEM
first. Then an experiment with a quasi-ellipse caisson was also performed to demonstrate the effectiveness and
practical potential of present method. Finally, a surface-piercing concentric cylindrical system, which consists of
an impermeable inner cylinder and a coaxial single-layered perforated cylinder, was investigated by using present
method. The analysis shows that the maximum wave force on the inner cylinder is reduced to some extent with a
noncircular perforated cylinder around it, compared with circular cases, while the wave run-up is enlarged by the
uneven spacing between the boundaries with the increasing of the wave number.

1. Introduction

Water wave interaction with offshore structures has attracted
considerable interest by the scientists and engineers. To reduce the wave
action and protect the structures, various types of fixed and floating
breakwaters are settled around the structure to against the harsh envi-
ronmental conditions. Owing to the complex wave-structure interactions,
the breakwater tends to significantly affect the hydrodynamic perfor-
mance of the offshore structure, including the wave diffraction, trans-
mission, energy dissipation, wave run-up. The earliest attempt was
performed on a perforated-wall caisson with a perforated front wall
backed up by an impermeable wall constructed at Naples, Italy (Jarlan,
1961). Summering from the engineering experience in design and con-
struction of vertical breakwaters for harbor protection, Franco (1994)
given a brief description of the major failures and lessons learned from
practical engineering.

Because of its effective reduction of wave force and wave run-up on
the structures, many researches were carried out to investigate the wave
interaction with porous structures like porous plates/walls, slotted walls,
perforated wall caisson type breakwaters. Such breakwaters summarized
by Xiao et al. (2016) included perforated-wall breakwaters (Jarlan,
1961), spar-buoy breakwater fences (Liang et al., 2004), flexible porous

membrane barriers (Suresh Kumar et al., 2007), truss breakwaters (Uzaki
et al., 2011), pneumatic floating breakwaters (He et al., 2012),
mat-shaped floating breakwaters (Loukogeorgaki et al., 2012), sub-
merged flat plate breakwaters (Lalli et al., 2012) and so on. Various types
of the breakwater make the theoretical analysis difficultly be derived in a
general formulation for each case. Early theory study was derived by
Sollitt and Cross (1972) to predict the wave reflection and transmission
with a permeable breakwater. The reflection coefficient introduced by
Sahoo et al. (2000) was one of most important parameter for the effi-
ciency of the breakwater. For the single- or multi-chamber perforated
caissons, it found that reflection coefficient is grateful affected by the
B=L, where B is the chamber width and L is the incident wavelength. A
rich literature on the effect of the B=L indicated that it would vary a lot
for different practical cases. Detail introduction on this topic can be found
from the review of Huang et al. (2011).

The cylindrical structure is free-widely use in the offshore structures,
for instance offshore wind turbine, oil platform and bridge foundation. A
semi-empirical method called Morison equation (Morison et al., 1950) is
widely used to calculate the inline wave force on the small structure in
oscillatory flow. For the diffraction problem with a large body, MacCamy
and Fuchs (1954) proposed a linear analytical solution of wave action
around a bottom mounted cylinder, which neglect the effect of the
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viscosity of the water. Interactions of water waves with a porous vertical
cylinder or concentric porous cylinder system also have been an active
research topic for years. Wang and Ren (1994) performed a theoretical
investigation of wave interaction with a concentric surface piercing
two-cylinder system, where the exterior cylinder is porous and consid-
ered to be thin in thickness and the interior cylinder is impermeable.
Later, this method was extended by Darwiche et al. (1994) and Williams
and Li (1998) to a similar two-cylinder system case, but with the outer
cylinder being porous in the vicinity of free surface and impermeable at
some distance below the water surface, and further with the inner cyl-
inder mounted on a storage tank, respectively. For the multi-pile prob-
lem, Williams and Li (2000) extended the work of Linton and Evans
(1990) to the interaction of water waves with arrays of bottom-mounted,
surface-piercing circular cylinders. Chen et al. (2011) revisited this topic
by using the null-field integral equation in conjunction with the addition
theorem and the Fourier series. The near-trapped phenomenon of
multi-pile was also discussed with the effect of porous cylinders and
disorder of layout. For the other wave cases, Zhong and Wang (2006)
presented the analytical solution on the solitary waves interacting with a
surface-piercing concentric porous cylinder system. It showed that the
hydrodynamic is much dependent on the annular spacing between the
outer porous cylinder and inter solid cylinder. Mandal et al. (2013, 2015)
investigated the hydroelastic analysis of a cylinder system, which con-
sists of a rigid cylinder and an outer flexible porous cylinder in water of
finite depth. The wave cases for the single-layer and two-layer fluid
having a free surface and an interface were considered to evaluate the
wave action.

A new semi-analytical method recently, namely scaled boundary
finite-element method (SBFEM), which used to solve soil–structure
interaction problems (Wolf, 2003), has been successfully induced to deal
with the linear wave diffraction problem around a porous structures (Liu
and Lin, 2013; Liu et al., 2012; Meng and Zou, 2012; Song and Tao, 2007,
2009; Tao et al., 2009). It also showed that this method can deal effi-
ciently with the diffraction problem around the bottom-mounted cylin-
der with an arbitrary section (Song et al., 2010). Another method using
the dual boundary element method (DBEM) coupled with the dual reci-
procity method (DRM) was employed by Chuang et al. (2015) to inves-
tigate wave scattering by a concentric porous cylinder system, which
consists of a circular inner cylinder and semicircular porous outer cyl-
inder mounted on a conical shoal.

Liu et al. (2016) performed a general method to solve the linear
diffraction wave around a uniform bottom-mounted cylinder with arbi-
trary smooth section by expanding the radius function into a Fourier
series. This method can be extended for the concentric porous cylinder
system with the boundaries are arbitrary smooth. The formulation of the
present method is showed in x2. The efficiency and accuracy of present
method was validated by comparing with the semi-analytical method of
SBFEM, as shown in x3. Further, an experiment was performed with a
quasi-ellipse caisson to demonstrate the practicability of present method
in this section. Then a cylindrical system which consist of a circular inner
cylinder and a cosine-type outer cylinder was further investigated in x4
with the effect of wave attack angle, layout of the system, wave number

and porous parameter. The major found of this study is shown in the last
section.

2. Mathematic model

Fig. 1 shows the diagram of the water wave interaction with a
concentric porous cylinder system. For the two coordinate systems, the
x-y or r-θ planes are all set at the still water level (SWL), and the origin is
inside the cross-section of the cylinder. The z-axis is perpendicular to the
SWL and positive upward. The whole fluid domain is divided into several
subdomains, Ωj ðj ¼ 1; 2; ⋅⋅⋅;NÞ, with the boundary of Γj ðj ¼ 1; 2; ⋅⋅⋅;
N� 1Þ. The boundary, which is considered to be thin in thickness, is
assumed to be arbitrary smooth and porous. For convenience, the interior
subdomain of boundary Γj is named as Ωj and the exterior subdomain of
boundary Γj is named as Ωjþ1. In following analysis, the cylinder is
exposed to the plane wave with a frequency ω , wave amplitude A and
water depth h.

As mentioned above, the radius function for the cross-section can be
expanded into the Fourier series based on the assumption of the smooth
cylinder surface. Therefore, the radius function rjðθÞ of the boundary Γi in
the polar coordinate can be written as

rjðθÞ ¼
X∞

nr¼�∞
bjnr e

inrθ ðj ¼ 1; 2; ⋅⋅⋅;N � 1Þ (1)

where nr 2 Z; bjnr is the Fourier coefficients of rjðθÞ and N is the number
of subdomain.

Then, a surface function, Sj, can be defined by

Sjðr; θÞ ¼ dis ¼ r �
X∞

nr¼�∞
bjnr e

inrθ ðj ¼ 1; 2; ⋅⋅⋅;N � 1Þ (2)

in which dis is the distance between Sj and Γj in the radial direction, as
shown in Fig. 2. It indicates that boundary Γj can be represented by
surface function Sj as the value of dis coming to zero.

Fig. 1. Schematic for a concentric cylinder system.

Fig. 2. Schematic for the surface function.
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