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A B S T R A C T

In the fields of naval architecture and ocean engineering applications, floating platforms or multi-hull vessels with
very different geometrical appearance have been designed to meet their mission requirements. Many objects were
built by composing a number of sub-objects in an arbitrary way because of the high flexibility available for the
construction work. Because the composition of the sub-objects normally are not arranged along a certain direction
in a fixed sequence, it could be sometimes troublesome for computing the hydrostatic data of such objects. In
order to facilitate this computation more easily and flexibly, a method has been developed in this paper, which
was derived from the simple principles of an exact pressure integration over triangles for getting the total
buoyancy force vector and the static equilibrium condition between the buoyancy force and the weight of the
floating object. The triangles thereby were generated by triangulation of the surfaces representing a whole
floating object. Finally, applications on a high-speed trimaran hull and a floating Kuroshio current turbine were
conducted for demonstrating the merit of this method. The placement of water compartments and free surface
effects were further analysed to evaluate the changing ballast conditions for hydrostatic and transitional
stabilities.

1. Introduction

Ship terminology defined a hull geometry in three orthogonal di-
rections, bodyplan, waterplan, and sheerplan. These plans are related to
stations, waterlines, and buttocks correspondingly, on which an offset
table is constructed. It is a common format to define a hull geometry and
to analyse its hydrostatics and stability performance. The analysis in-
volves area and volumetric properties and also static properties such as
moment, moment of inertia, and centre of buoyancy etc., so that a nu-
merical integration method for processing geometries is needed. Just
before the fast development of computer technology in recent decades
different integration methods have been widely applied, such as trape-
zoidal or Simpson's methods, which can be easily founded in a series of
well-known naval architecture textbooks such as (Barrass and Derrett,
2006), (Biran and Pulido, 2013), (Dudszus and Danckwardt, 1982),
(Kobylinski and Kastner, 2003), (Lewis, 1988) and (Rawson and Tupper,
2001). These methods are applicable to regular shapes, whose geomet-
rical changes along a longitudinal direction are smooth. In addition, the
shape has to be presented in a well-structured format. An offset table for

ships can meet these requirements. However, the main deficiency of this
integration approach is that the volumetric properties are calculated by
integrating area properties, which are again by integrating line proper-
ties. The double integral operation can accumulate errors from insuffi-
cient resolution of the offset table and from the numerical methods. So
modern ocean structures involving abrupt geometrical changes, for
instance multi-hull vessels and ocean platforms, suffered difficulties to
evaluate their performances in the traditional way. Nevertheless, most
offshore units are structured by simple mathematical geometries, for
example rectangular box, cylinder, sphere and prism. Analytical solutions
for area and volumetric properties (Bronshtein et al., 1997) exist for such
geometrical components that the whole properties can be calculated by
summation or parallel axis theorem (Paul, 1979). But this is not the case
for other shapes beyond simple mathematical expressions.

Also in the case of determining the transverse statical stability, an
approach by making a distinction of small and large angles of heel is
usually given in the aforementioned textbooks. The reason to take the
approach is due to the fact that the waterlines with different heel angles
may cut the stepwise cross-sections in different manners. If the heel angle
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is small, the resulting intersection point of a waterline and the ship side
can be assumed to be vertical wall-sided. In this case, a simplified rela-
tionship can be easily derived between the transverse stability and the
heeling angle. For large angles of heel, precise results can also be gotten
by more elaborately formulated equations. This method shows however a
disadvantage with two separate steps, which is kind of annoying. Some
analytical formulation for arbitrary 2D shape and implementations in
MATLAB (Wu, 2005; Duan et al., 2015) have been done and can provide
accurate results, However a more general three-dimensional method
with single integrated computing process is inevitable to calculate hy-
drostatic properties of an arbitrary configuration of geometry.

On the other hand the determination of floating states, for bodies,
subject to external loads in some scenarios requires a root finding pro-
cess. In other words, this process finds the position and orientation of a
watertight body, so that all forces and moments are balanced. Usually the
matrix methods was used to calculate the floating states (Zhao & Lin,
1985; Kopecky, 2007). For each iteration, the waterplan area, centre of
floatation, moment of inertia, displacement volume and centre of buoy-
ancy are calculated and filled in the Jacobian matrix. Not only the
computational workload is high but also those geometrical properties
might suffer inaccuracies in the traditional approach as described.

Apart from the gradient-based solver, another method of nonlinear
programming used to calculate the floating state of ships was proposed
(Ma et al., 2003, 2007). It established the absolute value of the total
recovery arm as the objective function to ensure that the displacement is
equal to the weight as the constraint condition, and the optimization of
the mathematical model for the design variables is the draft. Compared
with the traditional matrix method, the method in each iteration does not
need to calculate the surface properties, instead just calculating the tilts
of displacement volume and centre of buoyancy, and hence reducing
amount of calculation greatly, but the nonlinearity of hydrostatic prop-
erties requires some remeshing techniques (Lee & Lee, 2016). Others
treated this optimization problem by the genetic arithmetic (Lu et al.,
2005, 2006; Jin et al., 2007), in which the free float calculation is sum-
med up as a multi-objective constraint optimization problem. According
to the free floating condition of ships, since it is based on the calculation
of surface expression, it does not need a given initial iteration point, only
the total weight and centre of gravity of the ship are need. In addition, it
uses the draught, pitch angle and roll angle as the design variables
directly without the calculation of the tangent value of the dip angle.
Compared with other iterative methods, it is more accurate than the
methods based on two-dimensional representation.

To summarize the drawbacks of current geometrical process for hy-
drostatics are the erroneous double integration of offset tables and
limited analytical solutions for mathematical shapes. The former further
reduces the performance of determining floating states. The present
method derives the analytical solution to hydrostatic pressure for trian-
gulated surfaces, which avoids numerical integration and breaks the
limitation of mathematical shapes. The overhead of the proposed method
is the additional triangulation operation which is another topic about
surface grid preparing, and to present large numbers of triangles of a
body requires relatively larger files to store and also higher memory
usage.

2. Methodology

2.1. Surface triangulation and intersection

In computer-aided geometry modelling, a surface is usually presented
in parametric form, i.e. u and v direction in unit domains (Piegl and
Tiller, 2013), (Gallier, 2000). Isoparametric curves are easy to extract
from a surface by holding one parameter constant. Simply interleave the
isoparametric curves in u and v directions a structure grid can be ob-
tained. Triangulating the structured grid into triangle panels is con-
necting diagonal vertexes of each cell, as shown in Fig. 1. Advanced
controls such as aspect ratio, maximum edge length, and maximum

deviation from surface are on demand. The closed hull surface and
compartment geometry are triangulated with normal directions point
into fluids.

Geometrically speaking, the waterplans of a floating body and the free
surface inside a compartment in calm water are intersections of a flat
plane and 3D closed surfaces. Since these surfaces are triangulated, it is
the problem that intersects triangles with a plane. Four conditions is
illustrated in Fig. 2 and an intersection exist in case II and case III, where
h represents the immersed or above depth in/out of water. An intersected
segment must be a straight line starts and ends on the edges of the tri-
angle, which are also straight lines. So the calculation of the end points of
this line is simply by calculating an intersection of a plane and line seg-
ments of the triangle edges. After obtaining the end points on the edges in
case III, the immersed triangle is a special case of case I that one edge lies
on the plane. For case II the immersed part is a quadrilateral, which can
be further divided into two sub-triangles, both reduced to case I. So the
immersed part of a triangulated surface can be represented as a set of
triangles, which will be resolved hydrostatic pressures. A special case
that a triangle lies perfectly on the plane, the case V in Fig. 2, and
generate a jump of waterplan change will be specifically treated in the
following section. This condition does not effect on the pressure since its
water head is zero.

The outcome of the intersection of a plane and a closed meshed
surface is one or several planar polygons, as shown in Fig. 3. The polygon
contour is constructed by N vertices and N linear segments, and the x and
y are the coordinates of vertices. The area properties, including enclosing
area A, centre of polygon Cx and Cy, and moments of inertia about the
polygon centre in X and Y directions Ix and Iy, are analytically calculated
by Eqs. (1)–(3). The values in Y direction are obtained by swapping the
terms in the first parenthesis: x to y in Eq. (2) and y to x in Eq. (3). These
equations are derived from 2D triangle properties, which constitutes the
basic element of a polygon.

A ¼ 1
2

�����
XN�1

i¼0

ðxiyiþ1 � xiþ1yiÞ
����� (1)

Fig. 1. Surface triangulation.

Fig. 2. Triangle-plane intersection.
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