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A B S T R A C T

A new coarse and fine tuning fixed grid wavelet network is proposed for online predicting ship roll motion in
regular waves. This wavelet network is composed of discrete wavelet basis functions, whose structure and pa-
rameters are adjusted online based on a sliding data window. Coarse tuning refers to changing the structure of the
wavelet network, and fine tuning refers to only changing the coefficients of the wavelet network. In every sliding
data window, the Givens rotation method is first used to finely tune the wavelet network, then the orthogonal
least squares algorithm and the error reduction ratio criterion will be used to coarsely tune the wavelet network if
the fine tuning network does not satisfy the relevant conditions for model validation. This process guarantees that
the method can establish not only the model of the weakly nonlinear motion but also the model of the strongly
nonlinear motion. In this way, a concise prediction model of ship roll motion is obtained. This network exploits
the attractive features of wavelet and the fitting capability of conventional neural network. The prediction results
show that the modeling method is feasible, and it provides an effective tool for online predicting ship roll motion.

1. Introduction

Ship motion prediction is important for ship safety and efficient
operation. However, ship motion at sea is a complex nonlinear and time-
varying system, and it is very difficult to establish a precise mathematical
model for ship motion due to the environmental disturbances such as
wind, waves and current (Fossen, 2011). Of all the motionmodes, the roll
motion is the most crucial one since it is directly related to ship safety and
operating performance. The prediction of ship roll motion is vital for the
motion compensation which may prevent crash of cargo in cargo trans-
fer, improve the landing safety of aircrafts on carrier and the fire accu-
racy of the ship-borne weapon systems (Khan et al., 2005, 2006).

A lot of researches on ship motion prediction have been carried out by
using various methods. The classic methods using time series autore-
gression (AR) model, autoregressive moving average (ARMA) model and
so on belong to linear analysis methods, which are not accurate enough
for predicting the nonlinear ship motion. Kalman filtering method is
another commonly used method; to use this method, however, the state
equation of ship motion must be known, which limits its practical
application in some cases. To represent the nonlinear and time-varying
ship motion, neural networks have been used for the time series

prediction of ship motion (Khan et al., 2004, 2005; Li et al., 2017a,
2017b). Neural network has been also implemented in ship roll stabili-
zation control (Yin et al., 2014). Support vector machine (SVM) has also
been used to identify the parameters of nonlinear ship roll motion (Hou
and Zou, 2015, 2016). Neural network trained by singular value
decomposition has been used for the real time prediction of ship motions
(Khan et al., 2016). Theoretically, neural networks can approximate any
nonlinear function with arbitrary accuracy (Kecman, 2001); for this
reason, this intelligent technology is widely used in the modeling and
prediction of ship motions (Lainiotis et al., 1993; Faller et al., 1997;
Haddara and Xu, 1998; Haddara and Wang, 1999; Moreira and Guedes
Soares, 2003; Zhang and Zou, 2013).

In this paper, a new coarse and fine tuning fixed grid wavelet network
(CFT-FGWN) is proposed for online predicting ship roll motion based on
a sliding data window. The idea of using wavelets in neural networks was
first introduced by Zhang and Benveniste (1992). The wavelet network
not only preserves most of the advantages of the conventional neural
network, but also inherits the advantages of wavelet. Wavelets have the
property of localization in both the time space and the frequency space.
The wavelet network usually converges fast especially for modeling
strongly nonlinear systems. Billings and Wei used fixed grid wavelet
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networks for nonlinear system identification in 2005 (Billings and Wei,
2005). This type of wavelet networks stems from the discrete wavelet
transform, whose activation functions are some discrete wavelet func-
tions. The other type of wavelet networks is adaptive wavelet networks,
which stems from the continuous wavelet transform. Adaptive wavelet
networks and wavelet decomposition have been used for short term ship
motion prediction (Masi et al., 2012; Wang et al., 2012). In the fixed grid
wavelet networks, the scale and translation parameters of the wavelet
activation functions are determined in advance and only the outer
weights are unknown. These unknown weights can be easily obtained by
least squares approach. This is not the same as the conventional neural
networks, which are usually trained by gradient type algorithms. Most of
gradient type algorithms are sensitive to the initial conditions, and the
trained network usually converges on local optimum. The fixed grid
wavelet network can be viewed as a linear regression model, which
avoids local optimum and converges quickly (Billings, 2013). There has
been considerable interest in the implementation of wavelet networks
(Cao et al., 1995; Chen et al., 2006; Wei and Billings, 2004, 2006; Wei
et al., 2006). On the basis of the fixed grid wavelet network, this paper
proposes a CFT-FGWN, whose structure and parameters are adjusted
online as the sliding data window moves.

The modeling method based on wavelet network has the ability to
represent the strongly nonlinear ship roll motion, and it is robust to noise
and has high computational efficiency (Wei and Billings, 2004). The
approximating method of wavelet basis functions outperforms many
other fitting methods, which is shown to be asymptotically near optimal
and attains excellent convergence rate (Billings, 2013). In the present
study, the CFT-FGWN in conjunction with a sliding data window is used
to establish the wavelet network model of ship roll motion in regular
waves. First the library of wavelet candidate terms needs to be deter-
mined. This library contains a lot of discrete wavelet terms. Spectral
analysis and prior knowledge are used to determine which wavelet terms
should be included in this library. But the library is usually redundant;
the redundant terms must be eliminated. The forward orthogonal least
squares (OLS) algorithm and the error reduction ratio (ERR) criterion are
efficient model term detection approaches (Chen et al., 1989, 1991).
According to the ERR criterion, the most important term is selected first,
and then the less important terms are added one by one until the con-
structed model could give a good description of the system. Therefore,
the obtained model is usually concise. The simplest model of fitting the
data is also the most plausible (Abu-Mostafa et al., 2012). But there is no
need to find the important terms in every sliding data window. When the
sliding data window moves to the next instant, the model in which only
the parameters of the selected wavelet terms are adjusted may fit the data
very well, which is called fine tuning. The coarse tuning is necessary to
find important wavelet terms and compute the corresponding co-
efficients, whose computing cost is higher than the fine tuning. Initially,
coarse tuning is used to obtain the wavelet network model of the system.
When the sliding data window receives a new pair of data, Givens rota-
tion method is firstly used to finely tune the wavelet network model
(Ling, 1991; Luo and Billings, 1995a; Luo et al., 1996); then the coarse
tuning will be implemented if the fine tuning wavelet network model
does not meet the relevant conditions for model validation. As the sliding
data window continues to move, the above screening process will be
repeated. Because the modeling method adds a fine tuning process, and
the fine tuning algorithm can establish a good dynamic model when the
system changes slowly, the amount of computation will be reduced. If
fine tuning is useless, coarse tuning will be triggered. Hence the online
modeling method can not only change the structure of model, but also
change the coefficients of model, which is different from many other
online forecasting methods such as Kalman filteringmethod that can only
modulate the coefficients. Through the above modeling process, the
CFT-FGWN prediction model of ship roll motion can be obtained. The
prediction results based on the simulation data and experimental data
show that the CFT-FGWN modeling method is feasible.

2. A coarse and fine tuning fixed grid wavelet network

This section gives a brief introduction to the fixed grid wavelet net-
works, and describes how to construct a CFT-FGWN. In the following, the
one dimensional function f ðxÞ 2 L2ðRÞ is taken as an example, and two
dimensional wavelets are used to illustrate the related concepts.

2.1. Wavelet networks

According to the wavelet theory, there are two schemes for decom-
posing a one dimensional function f ðxÞ 2 L2ðRÞ (Zhang et al., 1995),
namely:

f ðxÞ ¼
X
j;k

h f ;ψ j;k

�
ψ j;kðxÞ j; k 2 Z (1)

f ðxÞ ¼
X
k

h f ;φj0 ;kiφj0 ; kðxÞ þ
X
j�j0 ;k

hf ;ψ j;k

�
ψ j;kðxÞ j; k 2 Z (2)

where h⋅; ⋅i represents the inner product in L2ðRÞ; j represents the reso-
lution or scale parameter in the decomposition, and k represents the
translation parameter, Z is the set of all integers; ψ and φ are the mother
wavelet and father wavelet, respectively. j0 is an arbitrary integer, rep-
resenting the coarsest resolution. The above two expressions are the
theoretical basis of constructing wavelet network.

In the actual function decomposition, the infinite decomposition of
f ðxÞ is unnecessary and impossible. It is reasonable and feasible to
represent a function using a finite decomposition of the expressions (1) or
(2) at an appropriate accuracy. In the case of expression (1), a function
f ðxÞ 2 L2ðRÞ can be decomposed into the following form:

f ðxÞ �
Xjmax

j¼j0

X
k2Kj

hf ;ψ j;k

�
ψ j;kðxÞ j; k 2 Z (3)

where jmax is the finest resolution, Kj ðj ¼ j0; j0 þ 1; � � �; jmaxÞ are the
subsets of Z, which are related to the resolution level j for all compactly
supported wavelets and for most rapidly attenuating wavelets. Eq. (3) for
the finite wavelet decompositions is the basis for constructing a fixed grid
wavelet network, which is shown in Fig. 1. As with the conventional
neural network, the wavelet function can be regarded as the activation
function of neural network. Different types of wavelets can construct
different wavelet network.

Although the above results are for the one-dimensional case, the
relevant concept can be extended to high-dimensional case. One common
approach is to treat a wavelet function as a radial basis function. For
example, a d-dimensional Mexican hat wavelet ψ ½d� : Rd 7! R can be
constructed by

Fig. 1. The architecture of the fixed grid wavelet network.
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