
Synchronization of faulty processors in coarse-grained TMR protected
partially reconfigurable FPGA designs

U. Kretzschmar a, J. Gomez-Cornejo a, A. Astarloa a, U. Bidarte a,n, J. Del Ser b,c

a Department of Electronics, University of the Basque Country UPV/EHU, 48013 Bilbao, Bizkaia, Spain
b OPTIMA Area, TECNALIA Research & Innovation, 48160 Derio, Bizkaia, Spain
c Department of Communications Engineering, University of the Basque Country UPV/EHU, 48013 Bilbao, Bizkaia, Spain

a r t i c l e i n f o

Article history:
Received 31 August 2015
Received in revised form
27 November 2015
Accepted 23 December 2015
Available online 16 February 2016

Keywords:
Reliability
TMR
FPGA
Synchronization
Fault-recovery
Processor

a b s t r a c t

The expansion of FPGA technology in numerous application fields is a fact. Single Event Effects (SEE) are a
critical factor for the reliability of FPGA based systems. For this reason, a number of researches have been
studying fault tolerance techniques to harden different elements of FPGA designs. Using Partial Recon-
figuration (PR) in conjunction with Triple Modular Redundancy (TMR) is an emerging approach in recent
publications dealing with the implementation of fault tolerant processors on SRAM-based FPGAs. While
these works pay great attention to the repair of erroneous instances by means of reconfiguration, the
essential step of synchronizing the repaired processors is insufficiently addressed. In this context, this
paper poses four different synchronization approaches for soft core processors, which balance differently
the trade-off between synchronization speed and hardware overhead. All approaches are assessed in
practice by synchronizing TMR protected PicoBlaze processors implemented on a Virtex-5 FPGA.
Nevertheless all methods are of a general nature and can be applied for different processor architectures
in a straightforward fashion.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The great flexibility, high achievable system speeds and the
large number of available design resources make SRAM-based
FPGAs a good choice for a wide variety of electronic designs.
Especially the low non-recurring engineering cost of FPGA based
designs, where the high initial expenses of ASICs or ASSPs cannot
be compensated by very high production volumes. Such designs
realized using FPGAs have been shown to outperform standard
CPUs [1–3]. Nevertheless, modern FPGA implementations typically
utilize soft- or hard-core processors to enable an efficient imple-
mentation of the overall system, as well as to take advantage of
existing hardware modules [4,5].

An additional advantage of SRAM-based FPGAs is Dynamic Partial
Reconfiguration (DPR), which allows designers to change parts of the
implemented design while keeping the overall system operational.
This time-multiplexing method of FPGA resources can be used in a
variety of ways such as e.g. adapting a cache architecture to specific
application requirements [6], implementing a multi-protocol net-
work switch or enabling software defined radio [7].

Due to the advantages that it provides, the number of fields of
application that make use of the FPGA technology continues
growing. In certain of these fields, in which a faulty operation can
jeopardize human life or the integrity of valuable technology, high
levels of reliability are required. Railway [8,9], automotive [10,11]
and space [12,13] systems are remarkable examples. In such sys-
tems robustness is one of the most relevant aspects and the high
susceptibility of SRAM-based FPGA technology to Single Event
Effects (SEE) becomes a crucial factor. SEE faults can be caused by
high energy particles impacting on the FPGA [14,15]. The most
critical among all SEEs are Single Event Upsets (SEUs) [16], specially
when they affect the configuration memory [17]. Unlike ASICs
where the interconnections and the logic elements on the die are
fixed, FPGAs use a configuration bitstream for defining the function
of the configurable logic elements or the interconnection matrix.
Configuration memory upsets can consequently alter the imple-
mented design by changing its elements. SEUs in user memories
such as FPGA internal block RAM (BRAM) and flip-flops are not as
critical for the overall system, because the SEU occurrence rate per
bit of BRAM is in the same order of magnitude as for the config-
uration memory. By contrast, a FPGA typically has one order of
magnitude more configuration memory than BRAM [18–20].

To avoid this issue, methods for mitigating the susceptibility of
FPGA designs against SEUs have been thoroughly investigated in
the literature by resorting to Error Correction Codes (ECC) [21,22]

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

http://dx.doi.org/10.1016/j.ress.2015.12.018
0951-8320/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: unai.bidarte@ehu.eus (U. Bidarte).

Reliability Engineering and System Safety 151 (2016) 1–9

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2015.12.018
http://dx.doi.org/10.1016/j.ress.2015.12.018
http://dx.doi.org/10.1016/j.ress.2015.12.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.12.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.12.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.12.018&domain=pdf
mailto:unai.bidarte@ehu.eus
http://dx.doi.org/10.1016/j.ress.2015.12.018


or Duplication With Comparison (DWC) [23,24]. In particular, the
so-called Triple Modular Redundancy (TMR) method results to be
the most frequently addressed by both industry and academia in
diverse technological architectures [25]. The rationale for this
trend is threefold: (1) the possibility of fault masking by imple-
menting the process of voting; (2) the method of scaling the TMR
protection by changing its granularity [26]; and (3) the availability
of tools allowing for a completely automated TMR generation [27].
TMR is typically combined with configuration scrubbing [28–30], a
process which corrects configuration memory upsets. In this
combination TMR enables the design to continue operating cor-
rectly in presence of faults, whereas scrubbing avoids the accu-
mulation of multiple faults.

Although the combination of TMR and scrubbing is the fault
handling strategy recommended by the FPGA vendors [31], several
recent publications have proposed a step beyond this established
method. This new strategy is based on coarse-grained TMR where
each triplicated instance of the design is partially reconfigurable.
Any error in one of such instances can be corrected by reconfi-
guring the corresponding module [32–34]. By providing distinct
implementations of the same instance, this solution can also repair
instances where the corresponding FPGA region has suffered a
permanent error. Notwithstanding the great extent to which the
TMR setup and the partial reconfiguration aspect of this approach
have been studied in the related literature, the required synchro-
nization of the reconfigured instance has been either neglected or
it has been analyzed in an incomplete manner.

This work addresses this scarcity of investigations around
synchronization in TMR systems by proposing, implementing and
evaluating four different synchronization methodologies. The four
approaches span a broad spectrum of possible alternatives from
minimal hardware overhead to completely hardware-based syn-
chronization. This allows balancing the trade-off between imple-
mentation cost and synchronization speed, depending on the
requirements of the target application at hand. The performance of
the proposed techniques is verified and compared to each other on
the PicoBlaze [38] processor. However, all four approaches are of
general nature and can easily be migrated to other processor
architectures. These papers synchronization methods are further-
more not restricted to a set-up implementing TMR and DPR. They
are applicable to any TMR protected processor system to recup-
erate a processor element, which was forced out of sync by a SEE.

The remainder of this work is structured as follows. Section 2
surveys recent advances on fault protection using TMR and DPR.
Next, Section 3 proposes the aforementioned four different syn-
chronization approaches, whereas implementation details are
outlined in Section 4. Practical results are presented in Section 5,
and finally Section 6 ends the paper by drawing some concluding
remarks.

2. Fault tolerant systems based on DPR and TMR

The combination of Triple Modular Redundancy and Dynamic
Partial Reconfiguration is a very attractive solution for the imple-
mentation of fault tolerant systems. Among many different pos-
sible implementation forms of TMR, the so-called coarse-grained
TMR [26] implements three instances of the same module and a
final voter. This method provides a slightly lower protection than
fine-grained TMR [26,39], where modules needing protection are
broken into smaller parts. Some fine-grained TMR approaches
even provide synchronization of the three modules [40,27].
However, coarse-grained TMR is ideal for its combination with
DPR as it results in a small amount of reconfigurable partitions. A
block diagram of this combination is depicted in Fig. 1.

The above figure summarizes the high level architecture pro-
posed in a number of recent publications [32–37]. Three instances
of the same module are placed in three partially reconfigurable
areas. Configuration errors in one of these modules can conse-
quently be repaired by reloading the bitstream of the faulty
module by using partial reconfiguration once a voting step has
identified the module providing the incorrect input. This voting
step can be implemented either as a single voter or as a triplicated
voter as suggested in Fig. 1. In addition to this protection against
configuration errors, the architecture in Fig. 1 accommodates the
idea of tilting [24].

In tilting the three reconfigurable regions are enlarged to
enable different implementations of the same logic, leaving
selected parts (the white spaces marked by arrows) of the partially
reconfigurable area unused. This strategy provides a means to
avoid permanent errors: if e.g. one of the reconfigurable regions
fails to operate correctly due to a permanent error, reloading the
same partial bitstream will not recover this corresponding
instance. But if a different tilted implementation of the module is
loaded, the region can be repaired if the tilted bitstream does not
use the region with the permanent fault.

Nevertheless, in the majority of cases a reconfiguration by itself
does not suffice for recovering a faulty TMR instance. If this
instance features some kind of internal state, this state needs to be
synchronized to the other instances after the reconfiguration. In
this line of reasoning, a synchronization method valid for small
Finite State Machines (FSM) is proposed in [36] introducing the
notion of state prediction. State prediction suggests that each FSM
has (at least) one state to which the machine always returns after a
finite amount of time. Therefore, by setting the FSM of a reconfi-
gured module to this state it is possible to wait for the other two
instances to reach this point during their normal operation, and
thereafter continue seamlessly operating with all three instances.
It should be clear that this method is obviously only applicable for
small state machines with a reduced number of possible states.

Synchronization has also been considered in [35], where a fault
tolerant MicroBlaze architecture using TMR and DPR was pre-
sented, as summarized in Fig. 2.

In this work three MicroBlaze processors sharing peripherals and
memory were implemented in partially reconfigurable areas. The
peripherals and the shared memory are protected by TMR and ECC,
respectively. Sharing one memory between the three processors

input

Majority
voter

DPR 1 DPR 2 DPR 3

output

MODULE
TMR 1
3 impl.

MODULE
TMR 3
3 impl.

MODULE
TMR 2
3 impl.

Tilting

Majority
voter

Majority
voter

Fig. 1. Typical architecture of the combination of TMR and DPR.

U. Kretzschmar et al. / Reliability Engineering and System Safety 151 (2016) 1–92



Download English Version:

https://daneshyari.com/en/article/806229

Download Persian Version:

https://daneshyari.com/article/806229

Daneshyari.com

https://daneshyari.com/en/article/806229
https://daneshyari.com/article/806229
https://daneshyari.com

