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ARTICLE INFO ABSTRACT

Available online 22 October 2015 Sensitivity Analysis (SA) is performed to gain fundamental insights on a system behavior that is usually
reproduced by a model and to identify the most relevant input variables whose variations affect the
system model functional response. For the reliability analysis of passive safety systems of Nuclear Power
Plants (NPPs), models are Best Estimate (BE) Thermal Hydraulic (TH) codes, that predict the system
functional response in normal and accidental conditions and, in this paper, an ensemble of three alter-
native invariant SA methods is innovatively set up for a SA on the TH code input variables. The ensemble
aggregates the input variables raking orders provided by Pearson correlation ratio, Delta method and
Beta method. The capability of the ensemble is shown on a BE-TH code of the Passive Containment
Cooling System (PCCS) of an Advanced Pressurized water reactor AP1000, during a Loss Of Coolant
Accident (LOCA), whose output probability density function (pdf) is approximated by a Finite Mixture
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1. Introduction

The reliability analysis of passive safety systems of advanced
Nuclear Power Plants (NPPs) must consider that when uncertainties of
counter-forces (e.g., friction) have magnitude comparable to the driving
ones (e.g., gravity, natural circulation), physical phenomena may fail
performing the intended function even if (i) safety margins are met, (ii)
no hardware failures occur (Burgazzi, 2007) [24,39].

Many approaches have been proposed for identifying and
quantifying the uncertainties affecting the code outputs and
generated by simplifications, approximations, round-off errors,
numerical techniques, user errors and variability in the input
parameters values [27] e.g., Code Scaling, Applicability, and
Uncertainty (CSAU) [36], Automated Statistical Treatment of
Uncertainty Method (ASTRUM) and Integrated Methodology for
Thermal-Hydraulics Uncertainty Analysis (IMTHUA) [17]. All these
methods deal with the need of addressing the problem of uncer-
tainty quantification of the Thermal Hydraulics (TH) codes that are
used to predict the response of the systems in nominal and acci-
dental conditions. Traditionally, these calculations were performed
on very conservative TH codes, that were supposed to “cover” the
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system from undesired and/or unknown system (uncertain)
behaviors (Zio et al., 2008). More recently, Best Estimate (BE)
codes have been adopted to provide more realistic results, thus
avoiding over-conservatism, [1,40] although, requiring a detailed,
precise and rigorous treatment of the related uncertainties.

This has brought into the reliability analysis of NPPs passive
systems an increasing computational complexity that has been
recently addressed in literature: for example, a combination of
Order Statistics (OS) [18,37] and Artificial Neural Networks (ANN)
has been proposed to speed up the computations [33]. However,
these approaches allow determining only some percentiles and
not the whole distribution, and do not provide insights on the
sensitivity to input variability [21,23].

In this respect, several SA methods have been proposed [31]:
some are quantitative and model-free, whereas some others are
specifically tailored to the model. Among those belonging to the
former group, global SA methods offer great capabilities but, again,
high computational costs, especially if compared to local and
regional SA methods. The most used global SA methods are: non-
parametric methods, variance-based methods, moment indepen-
dent, value of information-based methods and Monte Carlo filtering
(the interested reader may refer to Ref. [8] for a detailed review of
the methods). Examples of global non-parametric SA methods are
the Standardized Regression Coefficient [19] and the Pearson
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Fig. 1. Flowchart of the proposed framework for ensemble sensitivity analysis.

coefficient [29]. The functional ANOVA expansion of the input-
output mapping [19,30,9] is at the basis of variance-based meth-
ods, which are widely used in global SA. However, ANOVA expan-
sion requires independence among the model inputs and, if the
number of parameters is high, a high computational cost is required
for computing interaction terms [34]. Variance-based sensitivity
measures have been originally defined by Pearson in 1905 and are
known under the name of correlation ratio and have been further
improved by Sobol in 1993. In general terms, when used as mea-
sures of statistical dependence, first order variance-based sensitivity
measures as well as non-parametric methods may lead to mis-
leading conclusions, especially when model inputs are correlated.
These limitations are overcome by moment independent sensitivity
measures. Among these, the invariant method Delta [4] and
Kolmogorov-Smirnov distance between cumulative distribution
functions [2] have to be cited as viable solutions[5] .

In this work, to avoid a large number of TH code runs for the
numerical estimation of the selected sensitivity measures, we
propose an innovative framework of analysis whose flowchart is
shown in Fig. 1. The idea is to directly rely on the information
available in the multimodal pdf of the output variable for per-
forming global SA of a TH code. First, a limited number N of
simulations of the TH code are performed and a Finite Mixture
Model (FMM) is used to reconstruct the pdf of the model output
[10]. The natural clustering made by the FMM on the TH code
output [12,25] is exploited to estimate global sensitivity measures
using a given data approach [26]. As shown in Ref. [3], in fact,
variance-based and distribution-based sensitivity measures rest
on a common rationale that allows them to be estimated from the
same design of experiments. We can, then, employ an ensemble of
three SA indicators: first-order variance-based sensitivity measure
(i.e., the Pearson’s correlation ratio), the Delta method [4] and a
new sensitivity measure based on the Kolmogorov-Smirnov dis-
tance between cumulative distribution functions [2].We use these
sensitivity measures for ranking the input variables most affecting
the output uncertainty. The rationale behind the selection of these
sensitivity measures is that we want to show that, even with a
limited quantity of data, the aggregated ranking is robust and
reliable even though a commonly used sensitivity measure (i.e.,
the Pearson’s correlation ratio), that is reckoned to have limita-
tions when model inputs are correlated, is used in an ensemble
with other moment independent sensitivity measures better
performing when model inputs are correlated (i.e., the Delta and
the Beta measures).In other words, we show that the ensemble
strategy allows combining the output of the three individual
methods (that perform more or less well depending on the data)
to generate reliable rankings [13]. The idea of using an ensemble of
methods for sensitivity analysis will be shown particularly useful

when the number of TH code simulations is small, for a low
computational cost: due to the limited quantity of data in this
situation, in fact, possible misleading rankings can arise from the
individual SA methods, whereas the diversity of the methods
integrated in the ensemble allows overcoming the problem. As a
last remark, it is worth pointing out that if different sensitivity
measures are chosen, where none of them can properly deal with
correlated inputs, the results would be different and either the
given data approach, nor the ensemble would be capable of
overcoming the misleading rankings of the single sensitivity
measures. In fact, the aggregation of the multiple rankings cannot
add any knowledge regarding the modeled phenomena and/or the
input variables correlation/dependence, but can only increase the
robustness and the reliability of the result (if there is agreement
among the different ranking), or suggest the analyst that the result
is not reliable and, thus, other sensitivity measures should be
adopted (if the different rankings lack of agreement).

Our application concerns the sensitivity analysis of a TH code
that simulates the behavior of the Passive Containment Cooling
System (PCCS) of an Advanced Pressurized water reactor AP1000
during a Loss Of Coolant Accident (LOCA). The combination of the
three sensitivity methods is shown to make the results robust,
with no additional computational costs (no more TH code runs are
required for SA).

The paper is organized as follows. In Section 2, the case study
and the relative TH code are illustrated. In Section 3, the basis of
FMM are presented along with the ensemble of sensitivity meth-
ods, i.e., Pearson correlation, Delta method and Beta method. In
Section 4, the experimental results are reported. Section 5 draws
some conclusions.

2. Case study

The AP1000 NPP is a 1117 MWe (3415 MWth) pressurized
water reactor (PWR),with a passive Residual Heat Removal System
(RHRS) and a Passive Containment Cooling System (PCCS). The
PCCS cools the containment following an accident, so that pressure
is effectively controlled within the safety limit of 0.4 MPa. During
an accident (for example, during a Loss Of Coolant Accident (LOCA)
or a Main Steam Line Break (MSLB) accident), the produced steam
is injected into the containment and (i) an air baffle incorporated
into the concrete structure outside the steel vessel creates the
tunnel for continuous, natural circulation of air, and (ii) water that
drains by gravity from a tank located on top of the containment
shield building (by means of three redundant and diverse water
drain valves) supplements, by evaporation, the heat removal. The
steel containment vessel provides the heat transfer surface
through which heat is removed from inside the containment and
transferred to the cold sink, i.e., the atmosphere. In addition, even
in case of failure of water drain, air-only cooling is supposed to be
capable of maintaining the containment below the failure pressure
[32]. Fig. 2 shows the PCCS of the AP1000 (Westinghouse Electric
Company).

For the quantification of the functional failure of the PCCS of the
AP1000 following a LOCA, a TH model for stratified heat transfer
with non-condensed gas has been developed, that consists in four
phases [28]: (1) blowdown, from the accident initiation (by a double-
ended guillotine pipe break in a primary coolant line affecting the
normal operation of the reactor at steady-state full power) to the
time at which the primary circuit pressure reaches the containment
pressure; (2) refill, from the end of the blowdown to the time when
the Emergency Core Cooling System (ECCS) refills the vessel lower
plenum; (3) reflood, which begins when water starts flooding the
core and ends when this is completely quenched; (4) post-reflood,
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