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A B S T R A C T

A spectrogram of a ship wake is a heat map that visualises the time-dependent frequency spectrum of surface
height measurements taken at a single point as the ship travels by. Spectrograms are easy to compute and, if
properly interpreted, have the potential to provide crucial information about various properties of the ship in
question. Here we use geometrical arguments and analysis of an idealised mathematical model to identify features
of spectrograms, concentrating on the effects of a finite-depth channel. Our results depend heavily on whether the
flow regime is subcritical or supercritical. To support our theoretical predictions, we compare with data taken
from experiments we conducted in a model test basin using a variety of realistic ship hulls. Finally, we note that
vessels with a high aspect ratio appear to produce spectrogram data that contains periodic patterns. We can
reproduce this behaviour in our mathematical model by using a so-called two-point wavemaker. These results
highlight the role of wave interference effects in spectrograms of ship wakes.

1. Introduction

There is recent interest in applying time–frequency analysis as a tool
for capturing various features of a ship wake. Such analysis involves
performing many short-time Fourier transforms on a cross-section of a
ship wake and visualising the resulting data as a spectrogram (Brown
et al., 1989; Didenkulova et al., 2013; Sheremet et al., 2013; Torsvik
et al., 2015a, 2015b; Wyatt and Hall, 1988). As this approach only re-
quires measurements taken at a single stationary sensor as a ship sails
past (Brown et al., 1989; David et al., 2017; Parnell et al., 2008), it offers
a viable method for analysing ship waves in real-world conditions. This
line of research has a range of potential practical applications in terms of
quantifying the negative effects that a propagating wake wash will have
when it interacts with a coastal zone (Torsvik et al., 2015b) or facilitating
remote sensing and surveillance of unmonitored vessels.

Before now, the published studies on spectrogram analysis of ship
wakes use experimental measurements taken from an open body of water
(Brown et al., 1989; Parnell et al., 2008; Sheremet et al., 2013). As such,
the surface height data involves a complicated combination of informa-
tion from multiple ships and wind waves. The resulting interference has
made it difficult for previous researchers to confidently attribute features

of a spectrogram to various properties of a ship or its wake (Torsvik et al.,
2015b). In response to this challenge, Pethiyagoda et al. (2017) used
linear water wave theory together with a mathematical model to explain
features of spectrograms of ship waves that are small in amplitude. This
explanation includes a derivation of the linear dispersion curve which
predicts the location of the colour intensity on the spectrogram when the
ship in question is travelling through an infinitely deep body of water.
Further, they used a simple weakly nonlinear theory and simulations of
the fully nonlinear version of the model to identify features of a spec-
trogram that are due to nonlinearity. The comparison between these new
theoretical results with data measured in a shipping channel in the Gulf
of Finland is promising (Pethiyagoda et al., 2017); however, there is a
need to extend the analysis to hold for finite-depth channels and to test
the predictions against cleaner data gathered from controlled
experiments.

In this paper, we extend the analysis in (Pethiyagoda et al., 2017) to
apply to finite-depth channels. Ship wakes on a finite-depth fluid are
interesting because they can be classified as either subcritical (FH < 1,
where FH is the depth based Froude number) or supercritical (FH > 1),
with qualitatively different wave patterns forming for each case. For
example, wakes for subcritical flows are made up of transverse waves and

* Corresponding author.
E-mail address: scott.mccue@qut.edu.au (S.W. McCue).

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

https://doi.org/10.1016/j.oceaneng.2018.01.108
Received 26 March 2017; Received in revised form 14 December 2017; Accepted 26 January 2018
Available online 6 April 2018
0029-8018/© 2018 Elsevier Ltd. All rights reserved.

Ocean Engineering 158 (2018) 123–131

mailto:scott.mccue@qut.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2018.01.108&domain=pdf
www.sciencedirect.com/science/journal/00298018
http://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2018.01.108
https://doi.org/10.1016/j.oceaneng.2018.01.108
https://doi.org/10.1016/j.oceaneng.2018.01.108


divergent waves, while wakes for supercritical flows contain divergent
waves only. It is interesting that the wavelength of supercritical waves
can vary greatly, and often contain some very long-wavelength waves
which are potentially very damaging to shorelines in sheltered water-
ways, where such energetic waves do not occur naturally (Macfarlane
et al., 2014). The difference between subcritical and supercritical flows
has a noticeable effect on the linear dispersion relation which, as we
show, directly affects the location of the high intensity regions on the
spectrograms. We support our theoretical findings by comparing with
experimental surface height measurements we have taken from a model
test basin, eliminating the effect of environmental factors such as wind
waves, currents or varying bathymetry.

Our study begins in Section 2 by presenting our mathematical
model, which involves inviscid fluid flow past an applied Gaussian-
type pressure on the surface. Here the pressure distribution is used
as an idealised mathematical representation of a ship and the strength
of the pressure (ε) acts as a proxy for the volume of water displaced by
the ship. In Section 3 we extend the geometric argument for deter-
mining the linear dispersion curve presented by Pethiyagoda et al.
(2017) to include the effects of a finite depth fluid. We observe the
effect of changing the width of the Gaussian pressure relative to the
water depth (δ), where the regions of high intensity favour higher
frequencies along the dispersion curves for smaller pressure widths.
Then, in Section 4 we validate the new linear and second-order
dispersion curves against spectrograms generated from experimental
data we collected from the model test basin at the Australian Maritime
College. We observe trends in the experimental spectrograms for
different sailing speeds and hull shapes, and provide possible expla-
nations for these trends in terms of linear and nonlinear wave prop-
erties. Lastly, in Section 5, certain periodic patterns in the
spectrograms for vessels with a high aspect ratio are explained by
taking into account wave interference effects.

2. Mathematical model

2.1. Problem setup

In order to simulate a wake left behind a moving ship, we consider the
idealised problem of calculating the free surface disturbance created by a
steadily moving pressure distribution applied to the surface of a body of
water of constant depth H. We suppose the pressure distribution is of a
Gaussian type with strength P0 and characteristic width L, and then
formulate the mathematical problem in the reference frame of this
moving pressure. We nondimensionalise the problem by scaling all ve-
locities by the speed of the pressure distribution, U, and all lengths by
U2=g, where g is acceleration due to gravity. The fully nonlinear gov-
erning equations are then

r2ϕ ¼ 0 for � F�2
H < z < ζðx; yÞ; (1)

1
2
jrϕj2 þ ζ þ εp ¼ 1

2
on z ¼ ζðx; yÞ; (2)

ϕxζx þ ϕyζy ¼ ϕz on z ¼ ζðx; yÞ; (3)

ϕz ¼ 0 on z ¼ �F�2
H (4)

ϕ � x as x→�∞; (5)

where ϕðx; y; zÞ is the velocity potential, ζðx; yÞ is the free-surface height,
ε ¼ P0=ðρU2Þ is the dimensionless pressure strength, ρ is the fluid density
and εpðx; yÞ is the pressure distribution. For the present study we will use
the pressure distribution

pðx; yÞ ¼ e�π2F4
Lðx2þy2Þ; (6)

where FH ¼ U=
ffiffiffiffiffiffi
gH

p
is the depth-based Froude number and FL ¼ U=

ffiffiffiffiffi
gL

p
is the length-based Froude number. We can also define the scaled width
of the pressure distribution δ ¼ L=H ¼ F2

H=F
2
L . In this formulation, FH is

the parameter that measures the speed of the moving pressure, while the
pressure strength ε provides a measure of nonlinearity in the problem
(the regime ε≪1 is approximately linear).

Our use of the applied pressure (6) to act as a mathematical repre-
sentation of ship is deficient in the sense that it does not allow for precise
features of the ship hull to be described in anyway. Despite thismodelling
simplification, it is common to use this idea when analysing ship wakes
from amathematical perspective (Darmon et al., 2014; Ellingsen, 2014; Li
and Ellingsen, 2016; Pethiyagoda et al., 2015; Smeltzer and Ellingsen,
2017), and indeed we show that there are many advantages in this
approach. To understand the analogy with real ship vessels, it is worth
interpreting ε as a crude measure of the volume of water displaced by a
vessel. Further, note that we can easily extend this model to include
multiple pressure distributions, as we do later in Section 5.

2.2. Exact solution to linear problem

For moderate to large values of ε, the mathematical problem (1)–(6) is
highly nonlinear. From a computational perspective, obtaining accurate
numerical solutions is challenging as the problem is three-dimensional
and the upper surface z ¼ ζðx; yÞ is unknown and must be solved for as
part of the solution process. Progress with the numerical solution to this
problem and related problems can made using boundary integral
methods (Forbes, 1989; Pethiyagoda et al., 2014a, 2014b; P�ar�au and
Vanden-Broeck, 2002), for example.

On the other hand, for weak pressure distributions, ε≪1, the problem
(1)–(6) can be linearised. The linearised version has the exact solution
(Wehausen and Laitone, 1960)

ζðx; yÞ ¼ �εpðx; yÞ þ ε
2π2

∫ π=2
�π=2∫

∞
0

k2~pðk; θÞcosðk½jxj cosθ þ y sinθ�Þ
k � sec2θ tanh

�
k
�
F2
H

� dkdθ

� 2εF2
HHðxÞ
π

∫ π=2
θ0

k20~pðk0; θÞsinðk0x cosθÞcosðk0y sinθÞ
F2
H � sec2θ sech2

�
k0
�
F2
H

� dθ;

(7)

where θ0 ¼ 0 for FH < 1 and θ0 ¼ arccosð1=FHÞ for FH > 1,

~pðk; θÞ ¼ exp
�� k2

��
4π2F4

L

����
πF4

L

�
is the Fourier transform of the pressure distribution (6), HðxÞ is the
Heaviside function and the path of integration over k is taken below the
pole k ¼ k0ðθÞ, where k0ðθÞ is the real positive root of

k � sec2θ tanh
�
k
�
F2
H

� ¼ 0; θ0 < θ <
π
2
: (8)

Note (8) is the linear dispersion relation for steady ship wave patterns
which we discuss in some detail in Section 3.2.

Fig. 1 presents free-surface profiles calculated using the exact
linear solution (7) for a subcritical Froude number, FH ¼ 0:6, and a
supercritical Froude number, FH ¼ 1:34. In the subcritical case we see
that the wave pattern is comprised of transverse waves that run
perpendicular to the direction of travel and divergent waves that are
oblique to this direction. On the other hand, as noted in the Intro-
duction, the wave pattern for the supercritical case contains only
divergent waves.

3. Spectrograms of finite-depth ship wakes

3.1. Computing a spectrogram

To compute the spectrogram data for a given signal, sðtÞ, we take the
square magnitude of a short-time Fourier transform

R. Pethiyagoda et al. Ocean Engineering 158 (2018) 123–131

124



Download English Version:

https://daneshyari.com/en/article/8062369

Download Persian Version:

https://daneshyari.com/article/8062369

Daneshyari.com

https://daneshyari.com/en/article/8062369
https://daneshyari.com/article/8062369
https://daneshyari.com

