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a b s t r a c t

The present paper evaluates five methods for building Conditional Probability Tables (CPTs) of Bayesian
Belief Networks (BBNs) from partial expert information: functional interpolation, the Elicitation BBN, the
Cain calculator, Fenton et al. and Røed et al. methods. The evaluation considers application to a specific
field of risk analysis, Human Reliability Analysis (HRA). The five methods are particularly suited for HRA
models calculating the human error probability as a function of influencing factor assessments. The
performance of the methods is evaluated on two simple examples, designed to test aspects relevant for
HRA (but not exclusively): the representation of strong factor influences and interactions, the repre-
sentation of uncertainty on the BBN relationships, and the method requirements as the BBN size
increases. The evaluation underscores modelling limitations related to the treatment of multi-factor
interdependencies and of different degrees of uncertainty in the factor relationships. The functional
interpolation method is the least susceptible to these limitations; however, its elicitation requirements
grow exponentially with the model size. Besides expert judgment, HRA applications of BBNs include the
use of empirical data, combination of data and judgment, information from existing HRA methods: the
building of the CPTs in these applications is outside the scope of the evaluation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Bayesian Belief Networks (BBNs) are increasingly being used in
risk analysis applications to model the effect of multiple, diverse,
inter-related influences on risk. Their ability to incorporate diverse
types of factors has allowed the construction of comprehensive
models for risk assessment including hardware, human, and
organizational failures, as well as diverse risk-conditioning events,
as in [1–3]. Risk analysis applications, dealing with rare events,
often have to cope with the scarcity of data available to under-
stand the complex interactions leading to failure events: in these
applications, BBNs have proven useful to formalize, represent, and
quantify subjective knowledge on uncertain events. At the other
extreme, in data-rich applications (e.g. some medical diagnosis
and financial applications), BBNs are typically used for data mining
to make sense of causal or influencing relationships and build
predictive models learnt from data [4]. Other applications fall
between these categories and BBNs are generally developed by
combining available data and expert judgment.

The focus of the present paper is on the development of BBNs
from expert judgment, for cases in which data is not available or
not adequate to determine the BBN relationships. While expert
judgment may be used in many phases of BBN development
(including the node and structure definition), the present paper
focuses on the quantification of the BBN relationships, i.e. the
Conditional Probability Distributions (CPDs). There is general
agreement that this is the most delicate part of the BBN devel-
opment [5]; although, concerns that some applications may lack
transparency in the process of node and structure definition were
raised recently [6,7].

In general, the elicitation of judgments to assess CPDs has fol-
lowed three approaches, often combined: direct assessment of the
probabilities by one or multiple experts; elicitation of probability
ranking on a qualitative scale (to avoid the shortcomings, e.g.
biases, of directly eliciting probabilities from experts); elicitation
of selected model relationships (or, more generally, of partial
model information) and derivation of the remaining relationships,
to complete or fill up the Conditional Probability Tables (CPTs), via
different methods. For the first two approaches, the issues to be
addressed are typical of applications in which a large number of
probabilities are elicited, e.g. avoiding different types of biases and
ensuring consistency in the assessments (these issues are
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presented in detail in [8,9]). Of course, when applying filling-up
methods, these issues may also need to be addressed. These
methods to populate CPTs on the basis of selected, elicited model
relationships are referred to in this paper as CPT building methods.

The most popular method to populate CPTs from partial
information is based on Noisy-OR gates [4,10,11]. The Noisy-OR
model entails assessing the effect on the outcome of the presence
of one factor at a time, with all other factors being absent. In their
typical implementation, Noisy-OR gates require binary BBN nodes
and model factor influences as independent of the presence of the
other factors. A number of extensions of the Noisy-OR model have
been developed, generally addressing either dependent influences
or multi-state nodes (see e.g., [12] for a brief summary). Alter-
native methods adopt interpolation algorithms [13–15] that typi-
cally extract information on the factor influences from selected,
specifically elicited CPDs. Fenton et al. [16] base their method on a
further concept, according to which CPTs are derived from
weighted functions of the influencing factors.

The available CPT building methods differ in their theoretical
basis, the base information on which they derive CPDs, the elici-
tation requirements, and the interpretation and extrapolation of
the factor influences. The present paper analyses a selection of
these methods for use in Human Reliability Analysis (HRA)
applications. HRA is the area of risk analysis dealing with identi-
fying risk-significant human failure events, understanding and
modelling their causes and influencing factors, and quantifying
their probability. Besides sharing many aspects with BBNs for
more general risk analysis applications, BBNs for HRA often
attempt to formally combine cognitive models, empirical data, and
expert judgment with the aim to enhance the empirical basis of
HRA methods, [7,17]. BBNs have a number of attractive features for
HRA and in general for fields with shortage of data and consequent
reliance on subjective judgments: their intuitive graphical repre-
sentation, the possibility of combining diverse sources of infor-
mation, the use the probabilistic framework to characterize
uncertainties. In terms of modelling capabilities, BBNs allow
modelling strong factor effects and interactions: this potentially
allows (provided that these effects can be quantified) to overcome
the assumption of some methods of independent factor effects
(e.g. SPAR-H [18], HEART [19]). Attractive features and research
gaps of the BBN modelling framework are discussed in a recent
review by the authors of the present paper [7]. Given the relevance
of the issue of CPT building and the variety of available methods, it
becomes important to clarify their strengths and limitations, to
evaluate their suitability for HRA, and to identify gaps to be
addressed by research.

The present analysis focuses on methods applicable to BBNs with
multi-state nodes; these are better suited for HRA applications than
those with binary nodes because the characterization of influencing
factors in HRA methods generally involves multiple levels, e.g. SPAR-
H [18], HEART [19] and CREAM [20]. The performance of five
methods is examined: the functional interpolation method [14], the
Elicitation BBN (EBBN) method [13], the Cain calculator [15], Fenton
et al. [16] and Røed et al. [2]. Two small BBNs representing very
simplified HRA models were used to benchmark the performance.
Small BBNs were selected to allow a comprehensive comparison of
the produced CPDs. The two examples are designed to test some
aspects relevant for HRA modelling: the representation of strong
factor influences and of factor interactions, the representation of
uncertainty on the BBN relationships, and the method requirements
as the size of the BBN increases.

Although on-going data collection efforts [21–23] aim at
reducing the need for expert judgment in HRA, the need to com-
bine empirical data and expert judgment is likely to persist for at
least the middle term. This will be the case especially for appli-
cation scopes for which data will continue to be difficult to obtain

(e.g., in nuclear PSA applications, HRA for accident mitigation
conditions and external initiating events) and also for industrial
sectors in which the collection of HRA data may be less advanced
than in the nuclear industry. Recent studies providing empirical
human error probability estimates focus on data usable for
quantification of first generation HRA methods [24–26]. Current
efforts on data collection for newer generation methods (empha-
sizing the role of the context and decision-making errors) are not
yet providing statistically solid figures [21,23,27]. This continued
need for expert inputs to HRA methods motivates this work's focus
on the use of expert data in the construction of BBNs for HRA. The
choice of BBNs with multi-state nodes is also related to this focus.
A motivation for the adoption of binary nodes in the recent efforts
to use empirical data to develop BBNs for HRA [17,28] is that it
makes data collection easier and statistically stronger. On the other
hand, binary BBN nodes are generally associated with models
based primarily on the presence or absence of an influencing
factor. Reducing the number and complexity of the model rela-
tionships is an advantage but may make the expert elicitation
more difficult because factors may be defined less specifically,
their states enveloping broader sets of conditions.

Note that in the literature, the application of BBNs to HRA
problems goes beyond models solely built on expert judgment,
addressed by the present paper. For example, the already men-
tioned [17,28] quantify the CPDs from databases of human failure
events (although in both [17,28] the available data is not sufficient
to a statistically solid determination of the CPDs and expert
judgment is used in combination). Other studies develop BBNs as
extensions of existing HRA methods, such as SPAR-H [29]: in these
cases the quantification of BBNs is based on the underling method
relationships. CPT populating methods have also been applied in
the HRA literature. A Noisy-Or filling up algorithm is used in [30],
therefore assuming independent parent nodes. Reference [31]
determines the CPDs by linear interpolation according to the
number of states of the parent nodes representing positive con-
ditions. As discussed in [7], the interpolation does not differentiate
among configurations with different parent nodes in the same
number of positive states. For HRA applications, however factors
can be characterized by strong interactions so that their effect can
be strongly dependent on which factors are in their positive and
negative states. In [32], pre-defined triangular functions are
associated to different factor strength category. The functions for
each strength category differ by their variance: the stronger the
influence, the smaller the variance. The functions for each parent
are then weighted to derive the child CPT. The method in [32]
shares similar characteristics with the Fenton et al. and Røed et al.
methods (use of weights and influence functions) and therefore is
not included in the present evaluation.

The rest of this paper is organized as follows. Section 2 briefly
presents BBNs and introduces CPT building methods in general.
Section 3 presents the design of the evaluation study. This is based
on testing the methods on how they reproduce relevant modelling
features for HRA, implemented on specific evaluation criteria. Two
simple HRA models are introduced (BBN 1, BBN 2), so that the
differences in the CPTs produced by the methods can be easily
traced. Section 4 presents the application of the five methods to
the two HRA models, on two analysis cases for each model (cases
NOUNC and UNC). Section 5 presents the evaluation of the
methods. Section 6 provides concluding remarks.

2. Bayesian Belief Networks: introduction

This section briefly introduces BBNs. Part of the section is taken
from [7]. For extensive treatment of the BBN modelling framework
the reader should refer to [4] and [10], for example.
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