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A B S T R A C T

We propose the use of machine learning techniques in the Bayesian framework for the prediction of tidal currents.
Computer algorithms based on the classical harmonic analysis approach have been used for several decades in
tidal predictions, however the method has several limitations in terms of handling of noise, expressing uncer-
tainty, capturing non-sinusoidal, non-harmonic variations. There is a need for principled approaches which can
handle uncertainty and accommodate noise in the data. In this work, we use Gaussian processes, a Bayesian non-
parametric machine learning technique, to predict tidal currents. The probabilistic and non-parametric nature of
the approach enables it to represent uncertainties in modelling and deal with complexities of the problem. The
method makes use of kernel functions to capture structures in the data. The overall objective is to take advantage
of the recent progress in machine learning to construct a robust algorithm. Using several sets of field data, we
show that the machine learning approach can achieve better results than the traditional approaches.

1. Introduction

Tidal waves are produced by changes in the gravitational forces of the
sun and the moon. Prediction of tidal currents are necessitated by prac-
tical requirements like navigation, protection from flooding, coastal
management to recent developments of energy extraction. Theoretical
understanding of the tidal phenomenon began with Newton pioneering
the gravitational theory and then later, Laplace deriving the expression
for the tidal potential. There have been many advances in methodologies
for tidal analysis since then. The most widely used method is that of the
harmonic analysis (HA), where the observed tidal variations are
considered as a resultant of various periodic components of known fre-
quencies, with the amplitudes and phases determined using the least-
squares fitting procedure. Computer codes based on HA have been
used for decades for the prediction of tidal heights (1-D) and currents (2-
D). Over the years various advances have beenmade to HA approach [see
e.g. Pawlowicz et al., 2002; Foreman et al., 2009; Leffler and Jay, 2009].
Other techniques include tidal spectroscopy (Munk and Cartwright,
1966), and response method for unified tide and surge prediction
(Cartwright, 1968), however they have not been widely adopted. HA has
been extensively used in the analysis of stationary tidal (height) records,
providing insights into the tidal dynamics. However, there are several
shortcomings of this methodology. One of the challenging tasks in HA is
the selection of tidal constituents, which if inaccurate can lead to over-
fitting of data or numerical issues (Jay and Flinchem, 1999). Appropriate

modelling of noise is another issue. In tidal analysis, signals which do not
contribute to the tidal variations are classified as ‘noise. In reality, there
can be cases where the non-tidal signal is much stronger than the tidal
e.g. the occurrence of a stormy event, and many of such effects are
non-harmonic. It is difficult to incorporate such effects in the tidal HA
formulation. In general, the technique is not suitable for application to
non-stationary data (Jay and Flinchem, 1999). HA is also incapable of
modelling the spatial variability of tides – this is not a big issue in
modelling tidal heights which changes slowly in space, however tidal
currents can vary sharply within short distances due to changes in ba-
thymetry and topography. As tides move into shallow waters, they are
distorted resulting in overtides (higher harmonics of principal constitu-
ents) and compound tides (interaction between different constituents).
Such interactions can lead to asymmetry in the flood and ebb magnitudes
of the current, depending on the phase relationship (Friedrichs and
Aubrey, 1988). In HA, nonlinear characteristics are incorporated with the
inclusion of shallow water constituents, some of which may need to be
inferred, and such operations are often difficult. Even more complexities
can result near headlands (Geyer, 1993), where complex flow structures
can result in additional frequencies, which are not necessarily sinusoidal.
In relation to the uncertainty estimation, HA generates confidence in-
tervals for the current ellipse parameters (which are often large (Leffler
and Jay, 2009)). However, in a lot of practical applications it is more
useful to generate confidence interval estimates directly in the time
domain.
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In this work, we present a novel approach to predict tidal currents
using probabilistic machine learning techniques in the Bayesian frame-
work, which provide principled approaches for dealing with uncertainty,
and can tackle the challenges of real world data (Roberts et al., 1984).
Uncertainty could be introduced in many forms - ranging from mea-
surement noise to uncertainty in the parameters of the model, and the
mathematics of probability enables expressing the uncertainties (Ghah-
ramani, 2015). Bayesian modelling approaches have been widely used in
different disciplines e.g. geostatistics (Matheron, 1973), meteorology
(Thompson, 1956), economics (Kim and Nelson, 1999), spatial statistics
(Ripley, 2005, Rasmussen and Williams), machine learning (Rasmussen
and Williams).

Gaussian process (GP), a Bayesian non-parametric approach, have
been shown to be well-suited in solving a variety of time-series modelling
problems (Roberts et al., 1984) and in this work we pursue this meth-
odology to model tidal current data. We introduce the application of
Bayesian machine learning to the tidal current prediction problem which
can address some of the shortcomings associated with traditional tech-
niques -

� modelling nonlinear interactions not captured in the HA especially at
locations of fast tidal currents

� accommodating uncertainties of all forms e.g. noise is included
directly in the mathematical formulation

� modelling non-harmonic variations in the short-term resulting from
meteorological effects, barotropic to baroclinic conversion.

� generating confidence intervals directly in the time-domain.

The method can be used for the prediction from any generic tidal
current time-series data. We show that the machine learning approach
can produce better predictions than the HA even in cases where the latter
is considered to be good (achieve good accuracy). An initial report on the
novel machine learning approach to tidal currents was made in (Sarkar
et al., 2016) where analysis was performed on tidal current data from a
numerical model. In this work we provide a detailed description of the
methodology with extensive discussions and analysis with real world
datasets as well as present new approaches to model short and strongly
contaminated datasets.

A brief overview of tides and HA is provided in the next section,
followed by an introduction to GP regression. We then analyze long tidal
current time series data using maximum a-posteriori and short tidal time-
series data using Monte Carlo Markov chain techniques, and compare the
results with classical HA approach. The work potentially opens up
application of machine learning to other problems in tidal analysis which
are otherwise not possible using traditional techniques.

2. Tides and harmonic analysis

Based on potential field theory, forces due to the sun and the moon
produce hundreds of tidal constituents with distinct frequencies.
Nonlinear interaction of the astronomical tidal components produces
secondary tides known as overtides (higher harmonics) or compound
tides (interaction between various tidal constituents). Let us consider a
time series: yðtÞ, t ¼ t1; t2; …:; tM , where the observation times are
regularly spaced at an interval Δt. The model equation with N constitu-
ents can be expressed as

yðtÞ ¼
X
k¼1
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where c0 is some offset and c1 indicate the trend, while the term inside
the summation indicate the variation of the constituents with aþk and a�k
and being the unknown complex amplitudes, ωk the angular frequency
and Vk is some astronomical argument. Note, yðtÞ is real if modelling tidal
heights, while for tidal currents it is a complex variable: yðtÞ ¼ uðtÞþ
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where ϕðkÞ
m ¼ ωkðtm � t0Þþ VkðtmÞ. The solutions are determined by

minimizing some function of the residual ðTa� yÞ, where y ¼ ½yðt1Þ;
yðt2Þ;…:;yðtmÞ�', a ¼ ½aþ1 ; aþ2 ;…; aþN ; a

�
1 ; a

�
2 ;…:; a�N ; c0; c1�' and T is a M �

2N þ 2 of linear and sinusoidal basis functions evaluated at the obser-
vation times. In case of the ordinary least squares (OLS) approach the

objective function to be minimized can be expressed as
������Ta� y

���j2, and
the solutions are determined as a ¼ ðT�TÞ�1T�y where superscript �
indicates the conjugate transpose of the matrix. However, a shortcoming
of the OLS method is its sensitivity to non-tidal variations, as it can over-
fit such effects while trying to minimize the residual error (Leffler and
Jay, 2009). The latest codes based on the HA uses the ‘Iteratively
Reweighted Least Squares’ algorithm which reduces the influence of the
non-tidal effects and the solution in this case is obtained as a ¼
ðT�WTÞ�1T�Wy, where W is some weighting matrix which is

Fig. 1. For a particular tidal constituent k, the rotating vectors with amplitude
aþk and a�k are considered to be generated by two different fictitious stars

Pþ
k

and
P�

k , rotating in the counterclockwise and clockwise direction respectively,
at a speed same as that of the constituents. The constant phase angle by which
the rotating vectors lead or lag behind their respective stars is known as the
greenwich phase gk.

D. Sarkar et al. Ocean Engineering 158 (2018) 221–231

222



Download	English	Version:

https://daneshyari.com/en/article/8062403

Download	Persian	Version:

https://daneshyari.com/article/8062403

Daneshyari.com

https://daneshyari.com/en/article/8062403
https://daneshyari.com/article/8062403
https://daneshyari.com/

