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A B S T R A C T

The problem of a floating ice sheet failure caused by stresses induced in ice by temperature changes at its top
surface is investigated. The ice cover is modelled as a plate of uniform thickness, which is laterally constrained at
its edges by rigid walls, and is assumed to deform, and ultimately fail, by the mechanism of creep buckling. The
floating plate is subjected to in-plane compressive stresses developing in ice to prevent its lateral expansion due to
heating, and is transversely (vertically) bent by the forces acting at its base and caused by the reaction of un-
derlying water. The sea ice is treated as a material whose elastic and viscous properties depend on its porosity and
current temperature, and therefore vary with the depth of ice. The results of simulations, carried out for a variety
of ice plate spans, thicknesses and temperature-change scenarios, illustrate the evolution of creep buckles in the
plate prior to its failure, and show the time variation of the magnitudes of forces exerted by ice on the constraining
walls.

1. Introduction

Floating sea, lake or river ice, like any material, expands when sub-
jected to heating. Surprisingly, little attention has been paid yet to this
phenomenon and its consequences for civil engineering, despite the fact
that thermally-induced forces developing in ice due to its in-plane
expansion, especially in cases when ice is constrained in lateral di-
rections, can reach magnitudes which are dangerous for the safety of
engineering structures. This work addresses one of the problems that can
be of interest to civil engineers. Namely, the forces which a floating ice
sheet exerts on a structure due to ice heating at its top surface are
determined, and their time variation during the heating process is
investigated. The analysis is carried out on the assumption that the forces
developing in ice and then transferred to a structure originate from the
elastic reaction of the medium to its thermally-induced expansion being
prevented by constraints imposed on the ice deformation by the structure
walls. Once in-plane elastic compressive forces have occurred in the ice
cover, the ice starts to deform by viscous creep, giving rise to its off-plane
buckling which ultimately leads to the ice failure when the ice flexural
strength is exceeded.

The topic of a floating ice sheet behaviour under the action of in-plane
axial forces and off-plane transverse loads due to the underlying water
reaction has been analysed by a number of investigators. The problem of
elastic buckling of a floating plate was solved in the papers by Kerr
(1978); Nevel (1980) and Sanderson (1988), in which approximate es-
timates for the magnitudes of the buckling forces, derived analytically,

are given. The approximate formulae proposed in these papers were
subsequently refined and corrected by Staroszczyk (2002), on the basis of
results obtained from finite-element calculations. Some relevant analyt-
ical results can be also found in the work by Kerr and Palmer (1972), and
experimental data on the elastic buckling of ice have been reported by
Sodhi et al. (1983). A more realistic problem of creep buckling of floating
ice was treated by Sj€olind (1985); Sanderson (1988); Staroszczyk (2003)
and Staroszczyk and Hedzielski (2004). In none of the above papers the
thermally-induced loads and their effects on the ice plate behaviour were
investigated.

In the present paper, an attempt is made to examine how the me-
chanical response of ice is affected by the changes in the temperature
field on the ice surface. Hence, thermally-induced axial stresses are
accounted for in the balance of all the forces acting on a floating plate,
and the effects of these thermal stresses on the mechanism of the ice
creep buckling and the subsequent ice failure are studied. Of prime in-
terest are the magnitudes of the forces exerted by ice on the walls con-
straining the plate in the horizontal direction, and the evolution of these
forces as the ice creep deformation proceeds until the instant of the ice
flexural fracture. The evolution of the thermally-induced forces within
the ice plate is not only due to the rise in temperature at the ice top
surface, but also due to the progressive vertical heat transfer through the
ice from its top to the bottom. The latter process results in the variation of
the elastic and viscous properties of the material, which are assumed to
be temperature-dependent; therefore, the plate cannot be treated as a
homogeneous, since its mechanical properties vary with depth. Further,
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the evolution of the plate deflection surface with increasing thermally-
induced axial loads is investigated, with the analysis of the characteris-
tics of buckles which grow in time as the ice deformation progresses.

The analysis of the floating ice sheet behaviour is carried out by
applying the classical theory of thin plates resting on an elastic founda-
tion (Timoshenko and Woinowsky-Krieger, 1959). The equations
formulating the problem considered are given in Section 2, together with
the relations describing the temperature-dependence of the elastic and
viscous properties of ice. In Section 3, the method of solution of the
equation governing the creep deformation of the plate is presented, and
the analysis of fundamental properties of this solution is carried out.
Section 4 is devoted to the presentation of the results of numerical sim-
ulations carried out for assumed temperature variation scenarios. The
results illustrate the effects of the plate thickness and length on the creep
behaviour of the ice and the magnitudes of the forces acting on the walls
constraining the ice. Finally, some conclusions are drawn in Section 5.

2. Problem formulation

The problem under consideration is depicted in Fig. 1. An ice sheet is
modelled as a plate of uniform thickness h and length L, and is assumed to
be constrained by vertical rigid walls at the plate ends at x ¼ 0 and x ¼ L.
The vertical coordinate axis z is directed downwards, with z ¼ 0 at the
upper surface of the plate, and z ¼ h at the base of the plate.

The plate deflection surface is denoted by the function wðx; tÞ, with t
denoting time, and w > 0 for the downward deflection. The plate of ice is
floating on the surface of underlying water, which exerts an elastic re-
action on the ice, proportional to the plate deflection. The ice top surface
is subjected to the action of varying in time temperature TðtÞ, with the ice
at the base (z ¼ h) being at the melting point temperature Tm all the time,
and T < Tm throughout the ice plate. It is assumed that at the initial time
t ¼ 0 the plate is stress-free; that is, it is in equilibrium under an initial
distribution of temperature in the plate. For simplicity, a plane-strain
problem is analysed here, so that the ice plate can be treated as a beam
of uniform width, with its elastic flexural rigidity adjusted accordingly to
account for the zero deformations in the lateral direction normal to the
plane Oxz.

In accordance with the standard theory of thin plates (Timoshenko
and Woinowsky-Krieger, 1959), it is assumed that the plate deflections
are small (that is, they are of the order of the plate thickness), and the
plate cross-sections which are normal to the middle plane in the un-
deformed state remain plane and normal to the middle surface of the
deformed plate. The plate is bent in the transverse (vertical) directions
by loads coming from the reaction of the underlying water base (these
loads are denoted by q in Fig. 1 b), and their result is either the lifting of
the plate or its depression from the floating equilibrium state. Besides
the bending, the plate is also subjected to the action of in-plane axial
forces, which in our case are generated by the changes in the ice
temperature.

Let denote the internal forces acting per unit width of the plate as M,
Q and N (see Fig. 1 b), where M is the bending moment, Q is the vertical
shear force, and N is the normal (tensile) force. Then, neglecting the own
weight of the plate and the inertia forces due to negligibly small veloc-
ities of ice, the equilibrium balances of forces in the z-axis direction and

the bending moments acting on an infinitesimal plate element give the
relations

∂Q
∂x þ N

∂2w
∂x2 ¼ �q;

∂M
∂x ¼ Q: (1)

The transverse distributed load q is equal to the underlying water
reaction. The latter is assumed to be elastic and linearly proportional to
the local plate deflection w (the Winkler–Zimmerman-type foundation);
hence, the load q is expressed by

q ¼ �ϱwgw; (2)

where ϱw is the water density and g is the acceleration due to gravity. By
eliminating now the shear force Q from equation (1) and using (2), one
obtains the differential equation

∂2M
∂x2 þ N

∂2w
∂x2 ¼ ϱwgw; (3)

whereM and N are the functions of x and t. The above internal forces are
defined in terms of the normal stresses σxx by the relations

N ¼ ∫ h
0σxxdz; M ¼ ∫ h

0σxxzdz: (4)

The stresses σxx in equation (4) are related to the plate deformations
and their rates by constitutive relations describing the physical prop-
erties of the material and its response to loading. It is well known
(Mellor, 1980; Sanderson, 1988) that at typical stress levels occurring
in sea ice, equal to about 1 MPa, the creep strains in ice exceed the
elastic ones in a matter of about 1 min from the start of loading. Thus,
the dominant mode of deformation in floating ice is viscous creep, and
hence this type of the material response is considered in the analysis of
the problem under investigation. However, the elastic behaviour of ice
is also important, since the axial force causing the buckling of the plate
arises due to the elastic reaction of the body to heating. In order to
describe the viscous response of ice, a constitutive law of the
Reiner-Rivlin type (Schulkes et al., 1998; Morland and Staroszczyk,
1998) is employed:

σij ¼ ðζ � μÞDkk δij þ 2μDij ði; j; k ¼ 1; 2; 3Þ; (5)

where the summation convention for repeated indices applies. In (5), δij
is the Kronecker symbol, ζ and μ denote the bulk and shear viscosities of
ice, respectively, and Dij are the components of the strain-rate tensor. The
latter components are defined by

Dij ¼ 1
2

�
∂vi
∂xj

þ ∂vj
∂xi

�
ði; j ¼ 1; 2; 3Þ; (6)

where vi denote the ice velocity vector components. Here, of interest is
only the strain-rate component Dxx due to the plate bending, and this is
given in terms of the curvature-rate of the plate deflection surface by the
relation

Dxx ¼ _κ ðz� z0Þ ¼ �∂2 _w
∂x2 ðz� z0Þ: (7)

Fig. 1. Floating ice plate of thickness h and span L constrained by vertical rigid walls: (a) plate vertical cross-section, (b) definition of internal forces.
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