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A B S T R A C T

The main objective of the present study is to establish a practical design strategy of air-balloons for a suppression
of the propeller cavitation induced hull pressures at multi frequencies. Theoretical foundation is initiated with the
existing modal series solution of a multiple scattering problem. An approximated form is then derived by a
monopole regime which is valid in a low frequency range. Subsequent parametric analysis with a variation of the
separation distance between the balloons provides an analytical evidence that the mutual interaction can be
neglected unless they are too close to each other. Hence it is addressed that the individual balloon can be designed
separately without a consideration of their coupling characteristics. Finally, the water tunnel test with two bal-
loons demonstrates noticeable vibration reductions at the first- and second- order of blade passing frequencies by
72% and 59%, respectively.

1. Introduction

The previous single nozzle air-injection scheme (Lee et al., 2014)
discovered a possibility to suppress propeller-cavity induced hull exciting
pressure by means of an acoustic phenomenon known as the destructive
interference: When a pressure wave generated by cavitating propeller
strikes on the injected air, whose acoustical impedance (i.e., a product of
density and sound speed) is much less than that of water, the phase of
scattered (or reflected) wave becomes totally reversed. This results in a
cancellation of the incident- and the scattered-pressure in the total field.

As shown in Table 1, similar acoustic impedance between rubber and
water motivated our recent work (Lee et al., 2015a). In this approach, a
rubber layer at water-to-air interface appears to be acoustically trans-
parent. It was shown that the air-filled rubber membrane (hereinafter the
balloon) plays a specific role of air-packing without any influence on the
desired destructive interference. Accordingly an effort of the air-injection
could be made unnecessary by attaching such a simple air-balloon on the
stern-hull surface, as shown in Fig. 1(a). For verifications in the full-scale
ship, Lee et al. (2015b) presented sea-trial measurements by
manufacturing 1.1 m� 1.1m sized inflatable balloon. The balloon
showed its effectiveness by attaining a noticeable hull vibration reduc-
tion of 65% at the exciting frequency of interest. Based on the ideal gas

law, a method of how to inflate the balloon to the design size and to keep
it constant despite draught changes was treated as well.

The authors would like to emphasize that the phenomenon of acoustic
cancellation takes place only at a certain frequency however. It is the so-
called the frequency of destructive interference, which is inversely pro-
portional to the balloon size. In other words, once a single balloon is
tuned to a specific size, it alone has no choice but to counteract an
excitation at a particular frequency. The marine propeller operating in a
non-uniform wake field generates vibratory hull-exciting pressures at
several orders of blade passing frequency (BPF) (Carlton, 2007; Wei-
tendorf, 1981). The pressure amplitudes are normally descending with
the order, but we often encounter an occurrence of large pressure am-
plitudes at higher harmonics. For example, an excessive tip vortex cavi-
tation may provoke high harmonic amplitudes to be of the same level
with that of the lowest order, or even higher (Friesch, 1995, 1998;
H€am€al€ainen and van Heerd, 1998). Then, multi balloons shown in
Fig. 1(b) can be a natural measure to control such excitations at several
frequencies, as they are anticipated to make destructive interferences at
different frequencies.

The scope of this research is interested in reaching a design meth-
odology for the balloons using the multiple scattering theory. When two
or more spherical1 bodies are in close proximity to the others, there exist
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1 The balloon objects in this study will be idealized to spheres for a mathematical convenience. Its reasoning will be given in Section 2.1.
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mutual interactions between them. The solution of multiple scattering
requires satisfactions of appropriate boundary conditions on the surfaces
of all spheres (Brunning and Lo, 1971). For this purpose, the so called
“addition theorem” is inevitable to expand spherical wave solutions of the
Helmholtz equation centered about a given origin into the ones centered
about a shifted origin (Felderhof and Jones, 1987). Applying boundary
conditions on each sphere yields a set of simultaneous equations where
unknown scattering coefficients are coupled. The resulting equations for
a general number of spheres are so complicated that it is difficult to get
even a numerical solution. Alternatively, a reasonable approach to tackle
is to focus on the two spheres problem which was treated in a large
volume of published studies (Twersky, 1962; Brunning and Lo, 1971;
Domany et al., 1984; Gaunaurd et al., 1995; Gabrielli and
Mercier-Finidori, 2001; Gumerov and Duraiswami, 2002, 2005; Rou-
meliotis and Kotsis, 2007 and more). The very fundamental problem
deserves a thorough investigation, because it permits not only an op-
portunity to explore characteristics of the mutual interaction but also an
insight to attain a solution for the case of several spheres more than two.

To propose a practical design strategy, this paper begins with the
simplest case of two interacting spherical balloons by employing the
formulation of Gaunaurd et al. (1995). Rather than working with the
exact solution to the problem, we derive its monopole approximation
based on a low frequency assumption. Subsequent parametric study
varying the distance between the balloons offers a critical clue that the
interaction becomes weak for a large separation. This allows the solution
even for the general case to be expressible by an algebraic sum of isolated
balloon. Consequently it is addressed that the design strategy for the
individual balloon exactly follows the single case.

This paper takes a structure of four sections, including this intro-
ductory section. Section 2 lays out the theoretical formulation, and pre-
sents the findings of the research. It goes on with experimental
verifications in Section 3, wherein the propeller cavitation test with two

balloons exhibits considerable vibration suppressions at the two target
frequencies. Finally, this paper closes with conclusions in Section 4.

2. Theory of acoustic scattering for two spherical balloons

2.1. Problem formulation and analytic solution

As detailed in our previous studies (Lee et al., 2015a, 2015b), we are
concerning for a low frequency range up to several multiples of blade
rates so that the corresponding wavelengths can be assumed to be large
enough compared to the size of balloon. For such an acoustically small
object, a spherical-like wavefront can be approximated as a plane wave
across the body's aperture. This enables to regard the pressure fluctuation
from a cavitating propeller as a plane wave excitation.

The second assumption is to model the complicated shape of balloon
as an ideal sphere. Scattering by an acoustically small object is insensitive
to the shape, because details of the geometry are not resolved. That is, the
scattering in the low-frequency range is mainly affected by an effective
volume of the balloon rather than by its shape (Weston, 1967). Unless the
aspect ratio of the balloon is too high (Strasberg, 1953), hence, the
analysis for a spherical balloon would hold for a non-spherical case as
well.

Owing to the acoustically transparent nature of rubber material, we
will also not consider the rubber layer necessarily employed for an air-
packing. Even if there is a slight difference of the acoustic impedance
as usual, the resultant effect was found to be insignificant provided that
the frequency range of interest is low. Further discussions on this matter
can be found in the introduction part of Lee et al. (2015a).

Finally, the hull plate to which the balloon is attached will not be
taken into account for simplicity. The presence of rigid wall is equivalent
to the presence of a mirror balloon oscillating in phase with the true
balloon (Feuillade, 1995). The in-phase motion induces a positive mass

Glossary

a Radius of spherical balloon [m]
c Speed of sound [m/s]
Cq q-th order scattering amplitude of an isolated air-balloon
d Separation distance between the balloons [m]
f Frequency [Hz]
ϕ Azimuthal angle [rad]
g Relative density, ρa/ρw
h Relative sound speed, ca/cw
hq q-th order spherical Hankel function
i √-1
jq q-th order spherical Bessel function
λ Wavelength [m]
k Wavenumber [rad/m]
nq q-th order spherical Neumann function
N Number of spheres (or balloons)
p Pressure, [Pa]
p0 Amplitude of incident plane wave [Pa]
ptotal Total pressure (¼pinc + pscat) [Pa]
Pqp q-th order associated Legendre function

ptunnel Pressure in tunnel [bar]
q Order of wave
Q Truncation order
Q(pqpm) Translational coefficient
θ Polar angle [rad]
r Radial distance from the origin of sphere [m]
ρ Density [kg/m3]
t Time [s]
Vt Water flow speed in tunnel [m/s]
ω Frequency [rad/s]
Z Impedance [Rayls¼ (kg/m3)⋅(m/s)]

Subscripts
a Air
des Destructive interference
eq Equivalent
inc Incident wave
res Resonance
scat Scattered wave
total Total wave
w Seawater

Table 1
Comparisons of acoustic impedance.

Medium Density,
ρ [kg/m3]

Sound speed,
c [m/s]

Acoustic impedance,ρc
[kg/(m2s)¼ Rayls]

Water 1000 1500 1.50� 106

Rubber material* 900–1300 1300–1700 (1.17–2.21)� 106

(*) Cited from Wiley (2011).
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