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A B S T R A C T

This paper presents a straightforward implementation of cell-based smoothed finite element method (CS-FEM)
into fluid-structure interaction from the arbitrary Lagriangian-Eulerian perspective. Identical to the practice in
solid mechanics, CS-FEM is directly applied to viscous stress and pressure Poisson equation in fluid problem.
Minimum programming efforts are thus required to modify existing in-house codes. Following an efficient grid
moving strategy, partitioned implicit coupling scheme based upon fixed-point iterations is adopted to intercon-
nect individual fields. The proposed approach is validated against previously published data for several bench-
marks. Visible improvements are exposed in predicted results along with flow-induced phenomena.

1. Introduction

Gradient smoothing is a helpful technique to stabilize nodal integration
in Galerkin meshless methods (Chen et al., 2001; Yoo et al., 2004). Liu
and his colleagues (Liu et al., 2007) proposed the smoothed finite
element method (SFEM) by incorporation of gradient smoothing into the
traditional FEM. The essential idea behind SFEM consists in modification
of the compatible strain field whereby a Galerkin model may deliver
some superior properties. This technique is saliently featured by its
“softened” stiffness matrix which yields more accurate solution to
discrete partial differential equations than FEM at the expense of easy
implementation and nearly equal cost. After more than a decade of
development, a family of SFEM models have been fostered on account of
different smoothing domain modes. The monograph (Liu and Nguyen,
2010) and the review article (Zeng and Liu, 1007) deeply inspect SFEM's
theoretical bases, deliberately highlight its advantageous traits, and
vividly depict its versatility in a variety of disciplines.

Computational fluid dynamics (CFD), as it stands, probably becomes
another subject of interest to SFEM practitioners. Indeed, steps are taken
to study CFD related problems such as fluid-structure interaction (FSI)
(Zhang et al., 2012; Yao et al., 2012; Wang et al., 2014; He, 2016).
However, these scenarios simply deploy an outreach success in solid
mechanics, rather than a settlement customized for the Navier-Stokes
(NS) equations. Apparently, the NS equations, which constitute the
principle of the majority of CFD problems, do not suit SFEM after

introducing divergence theorem. For this reason, the underlying in-
vestments may be discouraged in CFD analyses. To overcome this
dilemma, Jiang et al. (2018) proposed three schemes to interpolate nodal
quantities of the convective acceleration for the cell-based smoothed
FEM (CS-FEM) (Liu et al., 2007) for the first time. In (Jiang et al., 2018)
the incompressible fluid flows within the laminar region are attempted
on the Eulerian mesh.

The objective of this paper is to develop a simple smoothing treatment
for FSI computation. Differing from (Jiang et al., 2018), the fluid stress
tensor is partially smoothed and thus the resultant implementation is as
same as that in solid mechanics. To make minimum modifications in
available FE codes, the natural preference is given to the simplest CS-FEM
that is initiated on four-node quadrilateral (Q4) element mesh. The
characteristic-based split (CBS) scheme (Zienkiewicz et al., 1999;
Nithiarasu et al., 2006) is utilized to decouple the fluid velocity and
pressure. Partitioned implicit coupling strategy (He and Zhang, 2017) is
preferred to interconnect individual fields due to its attractive simplicity.
Furthermore, SFEM may diminish pressure sensitivity on dynamic
boundaries for the fractional-step method.

The remainder of this paper is organized as follows. The basis of CS-
FEM is briefly recalled in Section 2. The equations governing fluid and
solid media are depicted in Sections 3 and 4. The mesh updating method
is summarized in Section 5. Section 6 describes the partitioned implicit
coupling algorithm. Numerical examples are investigated in Section 7
and conclusions are drawn in the final section.
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2. Brief on CS-FEM

Let us discretize a two-dimensional computational domain Ω into nel
Q4 elements exactly as in the standard FEM such thatΩ ¼ Ω1 [Ω2 [⋯ [
Ωnel andΩi \Ωj ¼∅ ði 6¼ jÞ. A Q4 element is further subdivided into a set

of complementary smoothing cells (SCs), namely Ωi ¼ ~Ω1
i [ ~Ω2

i [⋯ [
~Ωnsc
i where nsc is the number of SCs within the element. The gradient of a

field variable q smoothing at a point xc within an SC is approximated in
the form of

~rqðxcÞ ¼ ∫ ~ΩrqðxÞΦðx� xcÞdΩ; (1)

where r means the gradient operator, ~Ω designates the SC and the
Heaviside-type kernel Φ fulfills (Yoo et al., 2004)

Φ⩾0 and ∫ ~ΩΦdΩ ¼ 1: (2)

Applying Gauss theorem into the right-hand side of Eq. (1) yields

~rqðxcÞ ¼ ∫ ~ΓqðxÞnðxÞΦðx� xcÞdΓ� ∫ ~ΩqðxÞrΦðx� xcÞdΩ; (3)

where ~Γ is the boundary of ~Ω and n is the unit outward normal of ~Γ. The
smoothing kernel Φ is given by

Φðx� xcÞ ¼

8><
>:

1
Ac

x 2 ~Ω;

0 x 62 ~Ω;
(4)

where Ac ¼ ∫ ~ΩdΩ is the area of the SC. Substituting Eq. (4) into Eq. (3),
we have

~rqðxcÞ ¼ ∫ ~ΓqðxÞnðxÞΦðx� xcÞdΓ ¼ 1
Ac

∫ ~ΓqðxÞnðxÞdΓ; (5)

where the gradient of a constant automatically vanishes.
The Galerkin procedure gives the following approximation of q

q ¼ NIqI ; (6)

where NI is the shape function at node I, the underline indicates a nodal
quantity and Einstein's summation is applied. With the aid of Eq. (6), one
can immediately rewrite Eq. (5) as

~rqðxcÞ ¼
�
~rNIðxcÞ

�
q
I
¼

�
1
Ac

∫ ~ΓNIðxÞnðxÞdΓ
�
q
I
: (7)

Since one-point Gaussian quadrature is sufficiently accurate for line
integral along each segment of ~Γ, the item enclosed within external
brackets on the right hand side of Eq. (7) can be transformed to its
algebraic form

~rNIðxcÞ ¼ 1
Ac

X4

i¼1

NIðxgp
i Þnðxgp

i Þli; (8)

where xgpi is the Gaussian point of the boundary segment ~Γi and li is the
length of the i-th segment.

As of now, no coordinate transformation is involved and only shape
functions are invoked to calculate the smoothed gradients. A Q4 element
is partitioned into four quadrilateral SCs, relying on the stability condi-
tion (Liu et al., 2007). The construction of shape functions for CS-FEM is
illustrated in Fig. 1. Of total nine nodes, extra five nodes are generated to
compute the smoothed shape functions by simply averaging those values
at four corners (Liu et al., 2007; Dai and Liu, 2007). Therefore, no
additional degrees of freedom are introduced into CS-FEM.

3. Fluid problem

3.1. Governing equations

LetΩf⊂ℝ2 and ð0; TÞ be the fluid and temporal domains, respectively.
Ωf is bounded by Γf which is decomposed into three complementary
subsets, i.e., Dirichlet boundary Γf

d, Neumann boundary Γf
n and fluid-

structure interface Σ. The spatial and temporal coordinates are denoted
as x and t. The isothermal incompressible viscous fluid flows on a moving
mesh are dominated by the ALE formulation of the NS equations as
follows

r⋅u ¼ 0 on Ωf � ð0; TÞ; (9)

ρf
�
∂u
∂t þ c⋅ru� f f

�
�r⋅σf ¼ 0 on Ωf � ð0; TÞ; (10)

where u is the fluid velocity, ρf is the fluid density, c ¼ u�w is the

convective velocity,w is the mesh velocity, f f is the body force, and σf is
the fluid stress.

The constitutive equation for Newtonian fluid reads as

σf ¼ �pIþ 2με and ε ¼ 1
2

�ruþ ðruÞT� on Ωf � ð0; TÞ; (11)

where p is the fluid pressure, I denotes the identity tensor, μ is the dy-
namic viscosity, ε indicates the rate-of-strain tensor and superscript T
means transpose.

The fluid problem is completed by prescribing initial and boundary
conditions below

uðx; 0Þ ¼ u0; pðx; 0Þ ¼ p0 on Ωf
0; (12)

u ¼ gf on Γf
d; σf ⋅nf ¼ hf on Γf

n;

where nf is the unit outward normal of Γf
n. The interface coupling con-

ditions will be presented in a separate subsection.
We define the following dimensionless scales

bx ¼ x
L
;bt ¼ tU

L
; bu ¼ u

U
; bc ¼ c

U
; bp ¼ p

ρfU2
;bf f ¼ f fL

U2

where L is the characteristic length and U the free-stream velocity. By
employing these variables and dropping all hats, the dimensionless ALE-
NS equations are cast as follows

r⋅u ¼ 0; (13)

∂u
∂t þ c⋅ru�r⋅σf � f f ¼ 0; (14)

along with the constitutive relation

0

Fig. 1. Construction of SCs and shape functions in a Q4 element.
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