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a b s t r a c t

Calibration of model parameters is an essential step in predicting the response of a complicated system,
but the lack of data at the system level makes it impossible to conduct this quantification directly. In such
a situation, system model parameters are estimated using tests at lower levels of complexity which share
the same model parameters with the system. For such a multi-level problem, this paper proposes a
methodology to quantify the uncertainty in the system level prediction by integrating calibration, vali-
dation and sensitivity analysis at different levels. The proposed approach considers the validity of the
models used for parameter estimation at lower levels, as well as the relevance at the lower level to the
prediction at the system level. The model validity is evaluated using a model reliability metric, and
models with multivariate output are considered. The relevance is quantified by comparing Sobol indices
at the lower level and system level, thus measuring the extent to which a lower level test represents the
characteristics of the system so that the calibration results can be reliably used in the system level. Finally
the results of calibration, validation and relevance analysis are integrated in a roll-up method to predict
the system output.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Parameters of computational models are often calibrated using
experimental data. For a complicated system it may be difficult to
conduct full-scale experiments, but it may be possible to obtain
data at lower levels of complexity (e.g., isolated physics or simpler
configurations). Fig. 1 shows such a multi-level problem with two
lower levels (G1;G2) and a system level (H). The lower levels and
the system level constitute a hierarchy, and different levels have
the same set of model parameters (θm) that need to be calibrated.

In order to predict the system level output when data are only
available at lower levels, a reasonable route is to quantify the
model parameters using lower level data, and propagate the
results through the computational model at the system level.
Several issues need to be addressed in realizing such a multi-level
parameter estimation problem. First, even if model input and
output are measured in the lower level tests, thereby forming
pairwise input–output data, the calibration result can still be
uncertain due to several sources, including: 1) model errors in the
lower level computational models; 2) measurement errors in the
experiments; and 3) sparse experimental data. Second, the exis-
tence of multiple lower levels provides multiple possibilities to

conduct model calibration and leads to multiple calibration
results. In a multi-level problem, model calibration can be con-
ducted using the data from a single level or multiple levels. For the
problem in Fig. 1 with two lower levels, 3 calibration options are
possible: 1) calibration using the data and model from Level
1 alone; 2) calibration using the data and model from Level
2 alone; and 3) calibration using the data and models from both
Level 1 and Level 2. Generally, if data are available at n different
levels, 2n�1 model calibration options are possible to quantify the
uncertainty of model parameters [1].

This paper uses Bayesian inference for model calibration, thus
the result of model calibration is a joint posterior distribution of
model parameters. As Kennedy and O’Hagan [2] pointed out, the
posterior distribution is the “best-fitting” results in the sense of
representing the calibration data faithfully, not necessarily repre-
senting the true physical values. The main objective of this paper is
to determine the appropriate distribution for model parameters θm to
be used in system level prediction. One possibility is to use all the
lower level data in model calibration and propagate the resultant
posterior distribution to predict the system level output. However,
this result is conditioned on the event that both the models at
Level 1 and Level 2 are valid, which may or may not be true [3].
This paper answers this question by assigning a “confidence”
measure to each posterior distribution. Note that this paper is not
using the term “confidence” in the same sense as is used in sta-
tistics (as in confidence interval). This “confidence” measure
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constitutes of two components: 1) the model validity at the cor-
responding lower level (one can think of this as local confidence
regarding each lower level); 2) the relationship between the lower
level and the system level, i.e., the relevance of the posterior dis-
tribution obtained at the lower level to the system level prediction
problem (one can think of this as inter-level confidence). The
relationship between two lower levels can be also important.
However, this relationship is not considered here since in this
paper the obtained information in a lower level is extrapolated to
the system level, but not to another lower level.

Before quantifying the local confidence, the relationship
between model calibration and model validation should be clar-
ified. The purpose of model calibration is to adjust a set of para-
meters associated with a computational model so that the agree-
ment between model prediction and experimental observation is
maximized [4]. The term “model validation” has had different
interpretations in different studies, and this paper follows the
AIAA definition [5], i.e., model validation is the process of deter-
mining the degree to which a model is an accurate representation
of the real world from the perspective of the intended uses of the
model. Generally model validation is realized by comparing the
model prediction against experimental data. Both model calibra-
tion and model validation are conducted in this paper, but they use
different sets of experimental data (no calibration data is used in
model validation). Comprehensive reviews on model validation
can be found in [5–8]. A methodology for integrating model vali-
dation results from multiple experiments, each of which tests one
part of the physics in the target application, can be found in [9].

Model calibration and model validation are distinct activities.
Theoretically, for a computation model F θm;x

� �
where x is a set of

model inputs and θm is a set of model parameters, model valida-
tion can be conducted exclusive of any model calibration [5] if the
model parameters are assumed to be known. However, the model
parameters θm are often unknown. Therefore, prior to model
validation, model calibration can be conducted to quantify the
values of θm or reduce the uncertainty about their values. The KOH
framework [2] of model calibration used in this paper not only
reduces the analyst's uncertainty about θm by Bayesian inference,
but also quantifies the model error δðxÞ which is defined as the
difference between model prediction and reality. The corrected
prediction model under the KOH framework is F θm;x

� �þδðxÞ.
Compared to the original computational model, the new model is
different in two aspects: 1) reduced uncertainty in θm; and 2)
introduction of model error δðxÞ. In this paper, the model to be
assessed in model validation is this “corrected” model. Thus vali-
dation is a subsequent and distinct activity after calibration in this
paper. In other words, we consider model calibration and model
validation as two distinct activities, and use two different sets of
experimental data for these two activities, as suggested in [10,11].
Thus the calibration results of δðxÞ and θm within a single level do
not change as a result of model validation in our approach.

With the calibration and validation perspectives to be used in
this paper defined as above, the reason to use model validation to
quantify the local confidence is explained next. In model valida-
tion, the assessed model validity of the corrected prediction model
F θm;x
� �þδðxÞ at a lower level is a combined effect of three

components: 1) F θm;x
� �

; 2) δðxÞ; and 3) the posterior distribution
of θm. The third aspect corresponds to the “local confidence” (not
to be confused with confidence intervals used in statistics), thus
this paper takes the model validity as one factor affecting our
confidence in extrapolating the posterior distribution of the model
parameter from the lower level to the system level. This is rea-
sonable since the model parameter has been calibrated with a
model corresponding to the lower level experiment, and it is
important to know whether the model was calibrated accurately;
the calibration result is obviously affected by how accurately the
lower level model represents the physics in the lower level
experiment.

Model validation is about comparing the model prediction
against experimental data, and a model validation metric is nee-
ded to quantify this comparison. Among the validation metrics in
the literature, classical hypothesis testing gives an acceptance/
rejection decision. Confidence intervals have also been calculated
for the difference between model prediction and observed data
[5]. Although the confidence intervals may provide a quantitative
measure of the model validity at a single level, it is not possible to
apply them in uncertainty propagation and integration across
multiple levels, since the concept of propagation of confidence
interval does not exist in classical statistics. Validation metrics
resulting in a single quantitative value indicating the degree of
model validity have also been developed. In Bayesian hypothesis
testing [10,12], the posterior distribution obtained by model cali-
bration is used as the null hypothesis and an alternative dis-
tribution is selected for the alternative hypothesis. The result of
Bayesian hypothesis testing is a Bayes factor (the likelihood ratio
between the null and alternate hypotheses), measuring the sup-
port from validation data to the null and alternate hypotheses. This
is a relative measure significantly depending on the choice of
distribution of the alternate hypothesis. In contrast, Ferson et al.
[13,14] proposed an area metric, which is the difference between
CDFs and has the same unit as the prediction/data. For the case
that the model output is stochastic at fixed model input, this
metric measures the area between the CDF of model output and
the EDF (empirical distribution function) of experimental data at a
fixed model input. (Note that in this paper model inputs x and
model parameters θm are different quantities, thus the model
output can be stochastic at fixed model inputs x¼ x� if the model
parameters θm are still uncertainty. In addition, uncertain model
errors, surrogate model uncertainty are other reasons that the
model output can be stochastic at fixed model inputs) If data are
from experiments with different inputs, this metric is still
applicable by building a single EDF for all the data with u-pooling
method [13].

The model validation metric used in this paper is the model
reliability metric proposed by Rebba and Mahadevan [15] and
further developed by Sankararaman and Mahadevan [16]. This
metric measures the model validity by “model reliability”, which is
defined as the probability that the difference between model
prediction and observed data is less than a pre-defined tolerance.
Here the model prediction is stochastic, whose uncertainty is
caused by the uncertainty in the posterior distribution of model
parameters as well as the uncertainty regarding the model error.
In other words, the model reliability metric considers the com-
bined effect of these two sources of uncertainty. The value of
model reliability is between 0 and 1, thus it can be conveniently
used as a weighting term in subsequent uncertainty integration
across multiple levels.

For a given validation data point, the model reliability is a
deterministic value. However, its value is different for different
data points. To capture this variability in model reliability, this
paper proposes a stochastic model reliability metric where the
model reliability is treated as a random variable instead of a

Data at Level 1

Data at Level 2

System output?

Fig. 1. Multi-level parameter estimation problem.
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