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A B S T R A C T

In this study, a numerical model is presented for the nonlinear vibrational analysis in the symmetrical plane of the
rectangular offshore floating structures moored by cables. The upper end of each mooring cable is connected to
the floating structure and the other end is fixed to the sea bed. The nonlinear equations of motions of the mooring
cables are derived by using nonlinear cable elements that are formulated based on the extended Hamilton
principle. The floating platform is modeled as a rigid body with three degrees of freedom. The forces applied on
the floating structure and cables are analyzed, formulated and expressed in details. The connection conditions
between the floating structure and mooring cables are introduced to formulate the equations of motions of the
system as a whole. The vibrations of the floating structure under horizontal sinusoidal excitation are analyzed
numerically. The influence of different sag-to-span ratios or inclined angles of the mooring cables, and that of
different current velocities on the displacements of the floating structure and maximum tensile force in the cables
are studied. The displacement amplitudes of the moored floating structure and maximum cable tensile force under
different current velocities are also studied for different excitation frequencies.

1. Introduction

Large floating structures have been widely used in ocean engineering
in the last few decades as they are financially economical, can be con-
structed quickly, and easily expanded and removed. They are one of the
most environmentally friendly innovations that allow for the creation of
artificial land in the sea without destroying marine habitats or polluting
coastal waters (Wang et al., 2007). Moored floating structures are one of
the most popular types of offshore platforms, and used to extract marine
resources, such as oil, gas and minerals. These structures consist of a
floating platform and mooring cables. If the floating platform is subjected
to horizontal excitation, its movement can induce changes in themooring
cable geometry. Consequently, the geometric nonlinearity of the mooring
cables may substantially affect the behavior of the floating platform due
to their flexibility. Therefore, the accurate modeling of mooring cables is
crucial for carrying out the vibrational analysis of moored floating
structures.

The mooring cables were simplified as linear springs by some re-
searches (Yamamoto et al., 1980; Sannasiraj et al., 1998; Tang et al.,
2011). The slack mooring cables were modeled as linear springs to sup-
port the floating platform. The stiffness coefficients are derived from the
catenary equations of the cables. After the spring constants are deter-
mined, they are added to the linear stiffness in the equations of motion of

the floating platform. The advantage of this approach is that it is more
convenient and efficient for numerical analysis, but the results lack ac-
curacy because the behaviors of the cables cannot be well reflected
simply by the linear springs. This kind of structure has also been modeled
as a rigid mass connected to nonlinear springs (Esmailzadeh and Good-
arzi, 2001; Agarwal and Jain, 2003; Umar and Datta, 2003; Rosales and
Filipich, 2006). The dynamic tension from the mooring cables that acts
on the floating platform is taken into consideration based on the geom-
etry of the catenary chains and expressed with nonlinear terms in terms
of the displacement, velocity and acceleration of the floating platform.
The vibration of the mooring cables was analyzed by using the lumped
mass model for a more accurate analysis of the moored floating structure
(Huang, 1994; Masciola et al., 2012; Zhu and Yoo, 2015, 2016). With this
approach, the cables are divided into sections which are connected by
nodes, and equilibrium equations are directly formulated at each node.
Mooring cables have also been modeled by using a bar element as pro-
posed by Garrett (1982, 2005) or a bar element combined with an
updated Lagrangian formulation (Guti�errez-Romero et al., 2016). The
two-node catenary cable element was formulated based on the exact
analytical geometry of elastic catenary and the tangent stiffness matrix
was derived (O'Brien and Francis, 1964; Jayaraman and Knudson, 1981;
Yang and Tsay, 2007). The finite element method was used to model the
mooring cables based on the principle of minimum energy which
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incorporates the strain energy due to tension, bending and torsion (Kim
et al., 2010, 2013). The equations of motions of both the mooring cables
and the floating platform are solved separately and iteratively. With this
approach, the tensile forces applied on the platform by the cables are
used to update the equations of motions of the floating platform and then
the displacements of the floating platform are used to update the
boundary conditions of the mooring cables iteratively until the solution
converges at each time step.

In view that the mooring lines behavior more like cables, the full
stiffness matrix of the cable element is formulated in this paper. The
advantage of using nonlinear cable element rather than nonlinear beam
element is that the computational effort can be much reduced. The cable
element is formulated based on the extended Hamilton principle (Pai,
2007) and the nonlinear stiffness matrix, rather than the tangent
nonlinear stiffness matrix, of the cable is derived and expressed explicitly
in order to formulate the equations of motion of the system (Wang et al.,
2016). The exact catenary profile of the mooring cables in the static state
is determined for a given sag, which is referred to as the cable's initial
state. The modeling of the floating platform is simplified as a rigid body
with three degrees of freedom, i.e., two translational displacements and
one rotational displacement. The hydrodynamic drag forces are taken
into consideration and applied to both the mooring cables and the
floating platform. The connection conditions between the floating plat-
form and the mooring cables are introduced in deriving the equations of
motion for both the floating platform and the mooring cables as a whole.
The nonlinear equations of motion of the whole system are then solved
by the fourth-order Runge-Kutta method. The derived cable element was
validated by comparing the results from the cable element to those from
other methods (O'Brien and Francis, 1964; Jayaraman and Knudson,
1981; Yang and Tsay, 2007). The correctness of the solution procedure
and the obtained internal forces is validated by examining the equilib-
rium conditions at the nodes of the system. After that, the displacements
of the moored floating structures and themaximum tensile force in cables
are investigated for different current velocities, sag-to-span ratios, and
inclined angles of the mooring cables. The displacements of the moored
floating structure and the maximum tensile force in the cables are also
studied with different excitation frequencies and current velocities to
identify the critical performances of the structure.

2. Statement of the problem

Consider a two-dimensional moored floating structure as shown in
Fig. 1. The structure consists of a floating platform and two catenary
mooring cables C1 and C2. The upper ends of the mooring cables are
connected to the floating platform at two points, A and B, respectively.
The lower ends of the mooring cables are fixed on the sea bed. C1 and C2

are assumed to be symmetric about the y axis in static state. This model
can be used to analyze the vibrations of the moored platform when there
is a vertical symmetrical plane and the vibration is in this symmetrical
plane.

As shown in Fig. 1, l is the length between the two ends of each

mooring cable; θ and d are the inclined angle and the maximum sag of the
mooring cables, respectively; D is the center of mass of the floating
platform; wd and hb are the length and height of the floating platform,
respectively; hs is the submerged height of the floating platform in the sea
in static state; h is the depth of the sea. The modeling of the floating
platform is simplified as a rigid body with three degrees of freedom, i.e.,
the displacements at D in the x and y directions and the rotation in the
xOy plane about D.

2.1. Catenary profile of mooring cables in static state

The initial profile of the mooring cables in static state is governed by
the pretension and self-weight of the cables. The exact catenary profile of
the cable is required for a given sag-to-span ratio, d=l, in the following
analysis, as shown in Fig. 2.

The following static equilibrium equations in the x and y directions
are derived based on the equilibrium of the elements as shown in Fig. 3.
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where x and y are the coordinates of a point in the cables in static state
due to both the self-weight of the cables and pretension in the cable; T is
the tension in the cable in static state; H is the horizontal component of
the cable tension in static state; s is the coordinate along the cable length
in static state; ρ is the mass density of the cable; A is the cross-section area
of the cables.

A location parameter a is introduced which satisfies dy=dxjx¼a ¼ 0.
Solving Eq. (2) with the boundary condition yjx¼0 ¼ 0 and the introduced
condition dy=dxjx¼a ¼ 0 gives the catenary profile of the cables as
follows.
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Substituting the boundary condition yjx¼lcosθ ¼ lsinθ into Eq. (3) gives

Fig. 1. Configuration of the two-dimensional floating system.

Fig. 2. Inclined cable and its coordinate system.

Fig. 3. Differential cable element due to self-weight.
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