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a b s t r a c t

In this paper, we are concerned by the improvement of the safety, availability and reliability of dynamical
systems’ components subjected to slow degradations (slow drifts). We propose an architecture for efficient
Predictive Maintenance (PM) according to the real time estimate of the future state of the components. The
architecture is built on supervision and prognosis tools. The prognosis method is based on an appropriated
supervision technique that consists in drift tracking of the dynamical systems using AUDyC (AUto-adaptive and
Dynamical Clustering), that is an auto-adaptive dynamical classifier. Thus, due to the complexity and the
dynamical of the considered systems, the Failure Mode Effect and Criticity Analysis (FMECA) is used to identify
the key components of the systems. A component is defined as an element of the system that can be impacted
by only one failure. A failure of a key component causes a long downtime of the system. From the FMECA, a
Fault Tree Analysis (FTA) of the system are built to determine the propagation laws of a failure on the system by
using a deductive method. The proposed architecture is implemented for the PM of a thermoregulator. The
application on this real system highlights the interests and the performances of the proposed architecture.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

The main objective of the PM is to improve the availability and
the reliability of industrial systems by reducing the costs associated
with their maintainability [13,41,39,6,24]. In literature, PM is often
referred to as Condition-Based Maintenance (CBM). However, the
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CBM is a methodology based on the continuous survey of working
conditions to detect an abnormal situation (e.g. the exceeding of a
controlled parameter threshold level), to do maintenance actions
before a failure occur. While, with PM, it possible to predict when
the controlled quantity value will reach or exceed the threshold
values. With the PM, the staff will then be able to plan PM action,
depending to the operating conditions, the component substitution
or revision is really unavoidable [3]. Thus, approaches and defini-
tion of the PM are proposed in [31,5,43]. The maintenance strategies
presented in [41,39,6,24], require the online monitoring of the
system and the prognostic of failures. The Implementation of
solutions Prognostics and Health Management (PHM) is a growing
part in the activities of maintenance. Thus, the supervision and
prognosis tools for PM are now considered one of the main levers in
search of a performance overall [12]. PHM aims at estimating the
remaining useful life of a system (RUL) [22]. Different modeling
approaches for PHM can be found in [28]. The supervision and
prognosis are performed according to knowledge-based, model-
based approach [29,34] and data-driven approach [28]. Both latter
approaches have their own strengths and limitations in prognostic
applications. Therefore, a new prognostic approach combining data-
driven and model-based approaches is proposed in [23,16,18,33].
This new prognosis approach is a hybrid prognostic approach.
Model-based approaches require the physical laws which rule the
dynamical of the systems [59]. However, for complex system and
most of the real systems, a mathematical model is generally not
available. Finally, data-driven approaches are prioritized when no
prior knowledge and no mathematical models are available.

The mathematical model of dynamical and complex systems is
difficult to obtain for a lot of real applications, then data-driven
approaches are suitable to develop a supervision and prognosis tools
for PM of dynamical systems. A dynamical system is a system whose
behavior evolves over time. The most popular data-driven process
monitoring approaches include Principal Component Analysis (PCA)
[2], Sliding Windows SUM (SW-CUSUM), Nearest Neighbor [32],
Support Vector Machine [54] and Pattern Recognition Techniques
(PRT) [17,15,40].

But a focus is made on PRT. The PRT approaches aim at determin-
ing the similarity between measured data which characterize the
operating states of a system. An overview of PRT methodology in the
field of pattern recognition are proposed in [45,37] by considering
two main streams: supervised and unsupervised learning. Supervised
learning is a technique for creating a function for a training data (all
the data are labeled). The training data consists of pairs of input
objects (a vector of characteristics) and desired output. Unsupervised
learning is a method of learning where a model is fit to observations
(unlabeled data). It is distinguished from supervised learning by the
fact that there is no a prior output. Shukhat proposed in [51] a
supervised fuzzy pattern recognition algorithms which consists in
determining the partition between several classes.

A pattern recognition based on supervision is proposed in [49],
to maintain the control performances of a system under degraded
conditions. In [46], a fuzzy clustering method is proposed in the
context of labeled patterns, with the aim is to optimize the

reconciliation between data and the patterns. In general case
when partial knowledge are considered, then the PRT are semi-
supervised [14,21,11,26,58]. The goal of semi-supervised learning
is to understand how combining labeled and unlabeled data may
change the learning behavior, and design algorithms that take
advantage of such a combination. A semi-supervised learning is of
great interest in machine learning and data mining because it can
use readily available unlabeled data to improve supervised learn-
ing tasks when the labeled data are scarce or expensive. Thus, a
prior knowledge about the functioning modes is considering and
this initial knowledge is enriched on-line. The recent PRT include
LAMDA (Learning Algorithm for Multivariable Data Analysis) [7],
Fuzzy Pattern Matching (FPM) [42] and AUDyC [36]. The method
LAMDA consists in defining and recognizing classes according to
heuristic rule of Maximal Adequacy and a Greater Adequacy
Degree [30]. But, the LAMDA methodology is not really adapted
for dynamical clustering. Sayed-Mouchaweh presents in [42] an
overview of the PRT for the diagnosis of dynamical systems.
Moreover, a semi-supervised classification method based on FPM
is proposed. No prior knowledge about the classes is needed,
because the characteristics of each classes are sequ-
entially learned on line. However, for FPM method, the old and
new observations have the same weight, and using this method
depends on the classes separability. Finally, the AUDyC methodol-
ogy was proposed in [36] in order to supervise dynamical systems.
No prior knowledge about the classes or significance of the
measured variables is necessary. The classes corresponding to
the operating mode of the system may have complex shapes (or
structures) formed by one or more Gaussian prototype that are
enough close to each other. A prototype is defined by a single
Gaussian density. They are adapted continuously, allowing to
update the knowledge base, by integrating quickly the occurrence
of a new operating mode. AUDyC algorithm is particularly well
adapted for the supervision of dynamical and complex systems
without prior knowledge, as it is shown in [56]. The supervision
approach proposed in this paper is based on the AUDyC
methodology.

In this paper, the Possibility Function (PF) of each system's compo-
nent presented in [57] is replaced by Possibility Function by Episode
(PFE). The latter can be estimated by the experience feedback (this
took time) or by monitoring (supervisor) module tracks on real time
the degradation's evolution of each component. Here, the degradation
indicators are obtained by the supervision of the characteristic
intrinsic of components. In [57], the PF of each component is
represented by triangular fuzzy numbers and the estimation of PFE
is based on the degradation indicator of each system's component.
Thus, the PFE of top event results from the propagation of basic events
according to the causal relationships [27,57]. Failure possibility is the
possibility that the component fails depending to the evolution of the
normal mode towards to failure mode of a component i.

This paper is organized as follows. The proposed supervision and
prognosis architecture and definition of the methodology of FMECA
are presented in Section 2. In Section 3, we briefly review same
notation and definition of a FTA and the concept of dynamical failure

Table 1
Different types of faults for a component.

Brutal Quick drift Slow drift

Characteristics By a jump (normal mode to default
mode

The trajectory of the degradation is
concave

The trajectory of the degradation is
convex

Detectability Yes Yes Yes (not easy to detect)
Prognosability No Yes Yes
Feasibility of developing a prognosis

module
No Yes Yes

Examples Sharp break Running-in (new car) fouling of a component
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