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a b s t r a c t

As a new sparse kernel modeling technique, support vector regression has become a promising method
in structural reliability analysis. However, in the standard quadratic programming support vector
regression, its implementation is computationally expensive and sufficient model sparsity cannot be
guaranteed. In order to mitigate these difficulties, this paper presents a new multiwavelet linear
programming support vector regression method for reliability analysis. The method develops a novel
multiwavelet kernel by constructing the autocorrelation function of multiwavelets and employs this
kernel in context of linear programming support vector regression for approximating the limit states of
structures. Three examples involving one finite element-based problem illustrate the effectiveness of the
proposed method, which indicate that the new method is efficient than the classical support vector
regression method for response surface function approximation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Structural reliability analysis seeks to obtain the probability of
an event typically related to a possible failure of various engineer-
ing systems. For most structures of practical interest, the limit
state cannot be expressed as explicit, closed-form function of the
input random variables because the structural responses have to
be determined by a numerical procedure such as finite element
(FE) analysis. This brings great challenges for assessing the failure
probability of realistic structural systems. A common technique for
analyzing structural reliabilities with complex/implicit limit state
functions is to use the surrogate model method. It uses a strategic
design of experiments to obtain an analytical approximation of the
relationships between the input random variables and the limit
state response of interest. The earlier application of this approach
is the use of the response surface methods [1,2]. However, the
results given by the response surface methods may be sensitive to
the sample selection, the interpolation polynomial, or the shape of
the limit state due to the rigid and non-adaptive structure of the
polynomial models [3,4].

In order to overcome the above limitations, artificial neural
networks (ANNs) have been proposed as an alternative tool for

estimating response surface functions. The beauty of ANNs is their
flexibility in nature and their ability to capture complex nonlinear
relationships between input and output through appropriate
learning. It has been shown that the ANNs' models have practical
advantages over the classical response surface method because of
their superior mapping capacities and the flexibility in functional
form [5–8]. However, the performance of ANNs cannot be guar-
anteed due to the fitting problems because there is no efficient
constructive method for choosing the structure and the learning
parameters of the network [9]. The main challenge for ANNs
model is to suitably choose the learning parameters that help
restrain under- or over-fitting, as both are equally disastrous
[10,11].

As a novel sparse kernel modeling technique, support vector
machine (SVM) has been gaining popularity in the field of machine
learning during the past decade [12]. The standard SVM is opti-
mized by solving a linearly constrained quadratic programming
(QP) problem so that the solution of SVM is globally optimal and
unique, and the non-linear ability of SVM is achieved by using the
kernel mapping. When SVM is employed to deal with the function
approximation problems, it is often referred to as the support vector
regression (SVR). Compared with ANNs, SVM uses the theory of
minimizing the structure risk to avoid the problems of excessive
study, calamity data, local minimum value and so on. Even though
SVM has exhibited excellent performance, the literature on the use
of SVM for structural reliability analysis is still limited. Hurtado
[13,14] employed SVM as a classifier to discriminate samples into
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safe and failure classes in structural reliability analysis. SVM was
also employed as a regression tool for approximating the original
limit state for reliability analysis [15–18]. In addition, Dai et al. [19]
proposed a support vector density-based importance sampling
method for structural reliability analysis more recently, in which
SVM was employed as a density estimator to construct the impor-
tance sampling density.

As a summary most of the current practice employs the
standard SVM as statistical classifier or function approximator in
structural reliability analysis. However, in the standard QP-SVM,
the regression function obtained often contains redundant terms
and the inefficiency of QP-SVM for selecting support vectors could
lead to infeasible models. This is particularly apparent in regres-
sion application where the entire training set can be selected as
support vectors if error insensitivity is not included [20]. On the
other hand, since the commonly used kernel functions, such as
Gaussian kernel or polynomial kernel, is not the complete ortho-
normal bases, the SVM cannot approach any curve in quadratic
continuous integral space L2ðRÞ [21]. Therefore, a good choice of
the kernel plays a critical role in the performance of SVM.

In order to mitigate the above difficulties, various improve-
ments of support vector algorithms and kernels were developed in
recent years. For example, Smola and Schölkopf proposed a linear
programming (LP) SVM to control the accuracy and sparseness of
QP-SVM by using the linear kernel combination as an ansatz for
the solution, and employing l1 norm of the coefficient vector in the
cost function [22]. Suykens and Vandewalle proposed a least
square (LS) SVM to improve the performance of standard SVM
by transforming the QP to a linear equation sets [23]. Zhang et al.
introduced the wavelet kernel into QP-SVM and found that it
outperforms the Gaussian kernel in function regression since
wavelet function is orthonormal in L2ðRÞ [24]. Although the above
improved SVM has been successfully applied in many fields, their
application to structural reliability analysis is rather limited. Guo
and Bai employed the LS-SVM to approximate the limit state in
structural reliability analysis [25]. Tan et al. compared the ANN-
based response surface and LS-SVM-based response surface
method for structural reliability analysis [26]. Khatibinia et al.
proposed a wavelet weighted LS-SVM model to approximate the
limit state in seismic reliability analysis of structure, in which the
Morlet wavelet function was used as the kernel of the weighted
LS-SVM [27].

In this paper, for the purpose of developing an innovative and
efficient support vector regression model for limit state function
approximation, the issue of model sparsity of standard QP-SVR is
addressed from two different perspectives. Firstly, LP-SVR is
employed to capitalize on the advantages of the model sparsity,
the flexibility in using more general kernel functions, and the
computational efficiency of LP, as compared to QP-SVR. Secondly,
an innovative multiwavelet kernel is developed by constructing
the autocorrelation function of the multiwavelets and this new
kernel is then employed in the context of LP-SVR to yield a more
compact and sparse representation by leveraging the flexibility of
LP-SVR in choosing the kernels. It is known that multiwavelets
have many properties that the scalar wavelets do not have. It can
simultaneously possess several desirable properties such as ortho-
gonality, regularity and symmetry, while a scalar wavelet cannot
possess all these properties at the same time [28,29]. Therefore, it
might be expected that the LP-SVR with multiwavelet kernel has a
better performance. In addition, special attention is paid to the
exploration of the proposed regression model in approximating
the complex limit state for structural reliability analysis. To the
best knowledge of the authors, the wavelet kernels used in most of
the literatures are the scalar wavelet functions, and wavelet
kernels are commonly used in context of the standard QP-SVR.
The development of multiwavelet kernel and the application of

this new kernel in context of LP-SVR have not been studied. This
work made a new contribution on this regard.

The paper is organized as follows. Multiwavelet analysis is
briefly introduced in Section 2, followed by the description of the
proposed multiwavelet LP-SVR model in Section 3. The procedure
of the proposed method is then summarized in Section 4. Three
examples are then given to demonstrate the application and
efficiency of the proposed method. Comparisons of the proposed
method, the standard QP-SVM with Gaussian and scalar wavelet
kernel, and the LS-SVM with Gauss kernel are made.

2. From wavelets to multiwavelets

Wavelets, also called scalar wavelets, are oscillatory, compactly
supported functions that are constructed to possess certain prop-
erties such as orthogonality, smoothness and symmetry. Wavelet
theory can be introduced using the multiresolution analysis (MRA)
developed in [30]. In the framework of scalar wavelets, an MRA is
generated by one scaling function ϕðtÞ, and an orthonormal basis
for L2ðRÞ is formed via translation and dilation of one (mother)
wavelet ψ ðtÞAL2ðRÞ [30,31].

As an extension of scalar wavelets, multiwavelets consist of several
wavelet functions ψ ðtÞ ¼ fψ1ðtÞ;…;ψ rðtÞg, which are generated from
the multiscaling functions ϕðtÞ ¼ fϕ1ðtÞ;…;ϕrðtÞg, in which r is called
multiplicity. A multiwavelet basis for L2ðRÞ is composed of the scaled
translates and dilates of multiwavelet functions ψ ðtÞ. Because multi-
wavelets employ multiple scaling functions and multiple mother
wavelets, there is more freedom to design these functions to satisfy
a greater range of properties, including orthogonality, symmetry,
compact support and vanishing moments [28,29]. These properties
are very desirable in many applications but cannot be achieved by a
scalar wavelet simultaneously.

The multiwavelet dilation equation has the same form as the
wavelet dilation equation, except the recursion coefficients C½k�
(the multifilter) are r� r matrices instead of scalars:

ϕðtÞ ¼
X
kAZ

C½k�ϕð2t�kÞ ð1Þ

Like in the scalar wavelet case, the recursion coefficients C½k� can be
designed such that the resulting multisclaing function ϕðtÞ is
orthogonal across its integer translates. The elements in C½k� provide
more degrees of freedom than a traditional scalar wavelet. These
extra degrees of freedom can be used to incorporate useful properties
into the multiwavelets, such as orthogonality, symmetry, and vanish-
ing moments, which are known to be important for function
approximation. Thus, multiwavelets can simultaneously provide
perfect reconstruction while preserving length (orthogonality), good
performance at the boundaries (via linear-phase symmetry), and a
high order of approximation (vanishing moments).

The multiwavelet functions ψ ðtÞ are related to the multiscaling
function ψ ðtÞ via an equation of the same form as in the scalar
wavelet:

ψ ðtÞ ¼
X
kAZ

D½k�ϕð2t�kÞ ð2Þ

the coefficients D½k�ARr�r , however, are not related to the multi-
filter C½k� by any elegant formula as in the scalar wavelet case.
Nevertheless, the dilation equations (1) and (2) state that the
multiwavelets and the multiscaling functions are formed as linear
combinations of the scaling functions with half of the support.

A number of techniques for constructing multiwavelet have been
studied, while theoretical studies on multiwavelets with multiplicity
r42 are rare. In this study, for the purpose of simplicity, we will be
concerned only with multiwavelet system with r¼2, which was
constructed by Geronimo, Hardin and Massopust (GHM) [32]. The
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