
Capacity loss and residual capacity in weighted k-out-of-n:G systems

Serkan Eryilmaz n

Atilim University, Department of Industrial Engineering, Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 16 July 2014
Received in revised form
6 December 2014
Accepted 20 December 2014
Available online 30 December 2014

Keywords:
Binary weighted-k-out-of-n:G system
Capacity loss
Residual capacity

a b s t r a c t

A binary weighted-k-out-of-n:G system is a system that consists of n binary components, and functions
if and only if the total weight of working components is at least k. The performance of such a system is
characterized by its total weight/capacity. Therefore, the evaluation of the capacity of the system is of
special importance for understanding the behavior of the system over time. This paper is concerned with
capacity loss and residual capacity in binary weighted-k-out-of-n:G systems. These measures are
potentially useful for the purposes of preventive action. In particular, recursive and non-recursive
equations are obtained for the mean capacity loss and mean residual capacity of the binary weighted-k
-out-of-n:G system while it is working at a specific time. The mean residual capacity after the failure of
the system is also studied.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Systems with weighted components are applicable to many
capacity based engineering problems. There are many situations such
that system's components contribute differently to the capacity of the
system. Consider a system consisting of n binary components, each
with its own positiveweight. Theweight of a binary component might
be assumed to be its performance rate when it is in a functioning
state. Assume that the system works if and only if the total weight of
working components is above a given threshold k. Such a system is
known to be weighted-k-out-of-n:G system. This system model is
interesting and useful since it considers the individual impact of its
components on the functioning of the system. Consider an oil
transportation system consisting of three pipes (components) for
transporting oil from one point to another point. The pipes' perfor-
mance is measured by their transmission capacity (tons per minute).
Assume that the pipes can be in two states at any time as either fully
operational or complete failure. Such a system can be modeled by
weighted-k-out-of-3:G system, where k represents the minimum
transmission demand and the weights of the components correspond
to the transmission capacities of the pipes. A power generation system
that consists of generators with different capacities can also be
modeled by a weighted-k-out-of-n:G system. In this case, the weight
of a generating unit corresponds to the generation capacity of the unit,
and k is the required demand [1].

The above-mentioned systems are also known to be threshold
systems in the literature. Reliability modeling and analysis of threshold

systems have been considered in various papers including Rushdi [1],
Ball et al. [2], and Xie and Pham [3]. The threshold systems which
allow more than two performance levels for its components are well
presented in Levitin [4].

Wu and Chen [5] (see also [6]) provided recursive equations to
compute the reliability of weighted-k-out-of-n:G systems. Chen and
Yang [7] introduced and studied two-stage weighted k-out-of-n
systems. Li and Zuo [8] compared recursive and universal generating
function based methods for reliability evaluation of binary weighted-
k-out-of-n:G systems. Samaniego and Shaked [9] presented a detailed
analysis on lifetime based analysis of systems with weighted compo-
nents. Eryilmaz [10] studied residual performance of the systems with
weighted components after successive component failures. Armutkar
and Kamalja [11], Kamalja and Armutkar [12], and Eryilmaz and
Bozbulut [13] studied reliability and importance measures of
weighted-k-out-of-n:G systems. Estimation problem for this kind of
system has been considered in Aboalkhair et al. [14]. Multi-state
extensions of weighted-k-out-of-n:G systems have been considered in
Li and Zuo [15], Ding et al. [16], Wang et al. [17], Levitin [18], Eryilmaz
and Bozbulut [19], and Faghih-Roohi et al. [20].

Let T1;…; Tn denote the lifetimes of the components. If the
weight of the ith component is denoted by ωi, then the total
weight of the system at time t can be described by the stochastic
process:

WnðtÞ ¼
Xn
i ¼ 1

ωiIðTi4tÞ; ð1Þ

where IðTi4tÞ ¼ 1 if Ti4t and 0, otherwise. Clearly, the failure
time of the system is

T ¼ infft : WnðtÞokg:
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Because the performance of the weighted-k-out-of-n:G system
is characterized by its total capacity, the dynamic reliability
measures based on the total capacity Wn(t) of the system are
useful in order to understand the behavior of the system over
time. Indeed, the reliability of the system at time t is the
probability that the total weight of the system at time t is at least
k, i.e.

Rn;kðtÞ ¼ PfT4tg ¼ PfWnðtÞZkg:

If the components are independent, and PfTirtg ¼ FiðtÞ; i¼ 1;
…;n, then the survival function Rn;kðtÞ can be computed from the
recursion:

Rn;kðtÞ ¼ Rn�1;k�ωn
ðtÞF nðtÞþRn�1;kðtÞFnðtÞ; ð2Þ

for nZ1;0okrPn
i ¼ 1ωi, with Rn;kðtÞ ¼ 1 for kr0 [5].

Eryilmaz and Sarikaya [21] obtained the following nonrecursive
equation for the particular case when the system consists of two types
of elements such thatm components have the commonweightω and
survival function F ðtÞ, and the remaining n�m components have the
common weight ωn and survival function GðtÞ:

PfT4tg ¼
XX

ωyþωnzZk
0r yrm;0r zr n�m

m

y

 !
F
yðtÞFm�yðtÞ n�m

z

� �
G

zðtÞGn�m� zðtÞ;

ð3Þ
for t40. Obviously, Eq. (3) is computationally more efficient than (2)
if there are only two types of components in the system:

Define the following conditional random variables:

ðWnðsÞjT4sÞ; ð4Þ
and

ðWnðtÞ�WnðsÞjT4sÞ; ð5Þ
for tos.

The random variable defined by (4) represents the residual
capacity of the system while it is working at time s. The random
variable (5) defines the capacity loss between time points t and s.
These random quantities are potentially useful for a preventive action.
For example, if the total weight of working components is near k, then
the operator may consider a maintenance procedure since the system
may fail in a short time. On the other hand, if the capacity loss
between two time points is larger than a fixed threshold, then the
system may require maintenance. Furthermore, the random variable
defined by (5) is useful to elicit information about capacity loss over
disjoint time intervals.

Knowing the residual capacity of the system at a specific time
point while the system is working is also important from a reliability
economics point of view. For example, a power generation company
may determine its investment strategy for its particular generation
system depending on the value of hðsÞ ¼ EðWnðsÞjT4sÞ which pro-
vides information about the mean capacity of the system at a future
time point s. The value of h(s) together with the expected value of
consumption at time s are important for company's future strategies.

If in particular ωi ¼ 1 for all i¼ 1;…;n, i.e. all components have
the same weight, then the random variable (4) defines the number of
working components while the system is working at time t, and the
random variable (5) is the number of failed components between t
and s while the system is working at time s, tos. Therefore, these
conditional random variables are of special importance also for
understanding the dynamic behavior of usual k-out-of-n:G systems.

The residual capacity of the system after the failure of the
system can be defined as

WnðTÞ ¼
Xn
i ¼ 1

ωiIðTi4TÞ: ð6Þ

The random variable Wn(T) is a useful quantity, and gives an
idea of how much capacity should be available to replace the
system.

In this paper, we study the distribution and mean of the
conditional random variables defined by (4) and (5), and the mean
of the random variable defined by (6). In Section 2, we obtain
recursive equations for these characteristics under the general
case when the components have different failure time distribu-
tions. Section 3 is devoted to the case when the system consists of
two different types of components and we obtain non-recursive
equations. Finally, in Section 4, we provide illustrative computa-
tional results.

2. The general case

Let T1;…; Tn represent the lifetimes of n independent components
having continuous lifetime distributions FiðtÞ ¼ PfTirtg; i¼ 1;…;n.
The two dimensional distribution of the stochastic process Wn(t)
obeys the following set of recurrences. For n41 and m1Zm2,
considering the failure time of component n, it can be shown that

PfWnðtÞ ¼m1;WnðsÞ ¼m2g
¼ PfWn�1ðtÞ ¼m1�ωn;Wn�1ðsÞ ¼m2�ωngF nðsÞ
þPfWn�1ðtÞ ¼m1�ωn;Wn�1ðsÞ ¼m2gðFnðsÞ�FnðtÞÞ
þPfWn�1ðtÞ ¼m1;Wn�1ðsÞ ¼m2gFnðtÞ ð7Þ

with initial conditions

PfW1ðtÞ ¼m1;W1ðsÞ ¼m2g ¼

F 1ðsÞ if m1 ¼m2 ¼ω1

F1ðsÞ�F1ðtÞ if m1 ¼ω1 and m2 ¼ 0
F1ðtÞ if m1 ¼ 0 and m2 ¼ 0
0 otherwise

8>>><
>>>:

ð8Þ
tos.

Thus the distribution of the conditional random variable (5) can
be computed from

PfWnðtÞ�WnðsÞ ¼ a T4sj g ¼ PfWnðtÞ�WnðsÞ ¼ a; T4sg
PfT4sg : ð9Þ

By the definition of the system

PfWnðtÞ�WnðsÞ ¼ a; T4sg ¼ PfWnðtÞ�WnðsÞ ¼ a;WnðsÞZkg

¼
XPn

i ¼ 1
ωi

m2 ¼ k

PfWnðtÞ�WnðsÞ ¼ a;WnðsÞ ¼m2g

¼
XPn

i ¼ 1
ωi

m2 ¼ k

PfWnðtÞ ¼ aþm2;WnðsÞ ¼m2g:

ð10Þ

Therefore,

P WnðtÞ�WnðsÞ ¼ a T4sj g�

¼ 1
PfT4sg

XPn

i ¼ 1
ωi

m2 ¼ k

P WnðtÞ ¼ aþm2;WnðsÞ ¼m2
� �

: ð11Þ

The mean capacity loss between t and s can now be computed
from

m t; sð Þ ¼ EðWnðtÞ�WnðsÞjT4sÞ ¼
XPn

i ¼ 1
ωi �k

a ¼ 0

aP WnðtÞ�WnðsÞ
�

¼ ajT4sg: ð12Þ
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