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a b s t r a c t

When deciding whether to accept into service a new safety-critical system, or choosing between
alternative systems, uncertainty about the parameters that affect future failure probability may be a
major problem. This uncertainty can be extreme if there is the possibility of unknown design errors (e.g.
in software), or wide variation between nominally equivalent components.

We study the effect of parameter uncertainty on future reliability (survival probability), for systems
required to have low risk of even only one failure or accident over the long term (e.g. their whole
operational lifetime) and characterised by a single reliability parameter (e.g. probability of failure per
demand – pfd). A complete mathematical treatment requires stating a probability distribution for any
parameter with uncertain value. This is hard, so calculations are often performed using point estimates,
like the expected value.

We investigate conditions under which such simplified descriptions yield reliability values that are
sure to be pessimistic (or optimistic) bounds for a prediction based on the true distribution. Two
important observations are (i) using the expected value of the reliability parameter as its true value
guarantees a pessimistic estimate of reliability, a useful property in most safety-related decisions;
(ii) with a given expected pfd, broader distributions (in a formally defined meaning of “broader”), that is,
systems that are a priori “less predictable”, lower the risk of failures or accidents.

Result (i) justifies the simplification of using a mean in reliability modelling; we discuss within which
scope this justification applies, and explore related scenarios, e.g. how things improve if we can test the
system before operation. Result (ii) not only offers more flexible ways of bounding reliability predictions, but
also has important, often counter-intuitive implications for decision making in various areas, like selection of
components, project management, and product acceptance or licensing. For instance, in regulatory decision
making dilemmas may arise in which the goal of minimising risk runs counter to other commonly held
priorities, like predictability of risk; in safety assessment using expert opinion, the commonly recognised risk
of experts being “overconfident” may be less dangerous than their being underconfident.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Predictions of reliability and safety through probabilistic mod-
elling depend on the values of model parameters, e.g. component
failure rates, which are often uncertain.

The main application scenario that motivates our research involves
decisions on accepting a software product for use in a safety critical
application requiring low accident probability over the operational life
of the system in which it is embedded. For instance, an explicit
requirement in civil aviation is that “catastrophic failure conditions” be
“so unlikely that they are not anticipated to occur during the entire
operational life of all airplanes of one type” [16]. Nuclear power

protection systemsmay have required or claimed pfd bounds like 10�7

or 10�9 [23,22], to assure low probability of even one failure during
operational life. Formally, the system's predicted reliability function,
concerning those failures that may cause accidents, must be close to
1 at the end of the intended operational life.

With software, decisions are made especially difficult by
uncertainties about whether design faults are present, and about
their effect on probability of failure. The same difficulty arises with
respect to the probability of any system failures due to design
faults. Similar decision problems may also arise regarding physical
failures of components, if there is a concern about broad variation
in reliability parameters, as for instance with the current alarm
about electronic component supplies “contaminated” with unreli-
able “counterfeit” components.

Our reference scenario is a system S with high required
confidence of operating until the end of its service life without
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failure causing accident. Subject to discrete demands, S 's failure
process is completely characterised by a constant probability of
failure per demand (pfd). Examples are failure of software due to
design faults (the original motivation of our work), or hardware
without aging or maintenance.

Mathematically similar scenarios exist regarding reliability
even without safety implications, e.g. when a component should
last for the lifetime of the system of which it is part, because it
cannot be replaced or repaired, by either design (as in many
consumer products) or necessity (e.g. in spacecraft).

We must predict S 's probability of surviving t future discrete,
independent demands – its reliability R(t) in discrete time – with t
an upper bound on the lifetime number of demands, if accident-
free.1 This would be straightforward except for uncertainty about
the pfd value [3], arising e.g. because pfd is

� inferred from reliability databases on components that are
similar, but not identical, to the one for which a prediction is
sought, and/or that operate in potentially different conditions,
affecting their reliability differently. If the details of which
systems failed and when are missing or not released;

� guessed using indirect evidence, as e.g. often done for pfds due
to software design faults.

This uncertainty can in theory be rigorously described by a
subjective probability distribution for the value of each parameter.
However, an assessor has seldom a clear idea of this distribution,
and many calculations are de facto performed by treating their
available EðpfdÞ estimate as though it were the true pfd. Sensitivity
analysis may be used to check that small variations in the estimate
only cause acceptable prediction error, but in practice much

reasoning among practitioners only deals with a point estimate
EðpfdÞ, without acknowledging that, in fact, the shape of the
probability distribution of the pfd may also have a substantial
effect on the predicted value sought (e.g. reliability over a given
period of operation), and this effect may be non-obvious.

Thus, using a point pfd estimate to calculate a system's lifetime
survival probability may lead to errors of various kinds [1,9].

Uncertainty about parameter values is a typical case of epis-
temic uncertainty in predictions (i.e., uncertainty arising from lack
of knowledge rather than from an “inherent randomness” of the
process studied). Epistemic uncertainty is widely studied [19,20]
and many formal mathematical methods have been proposed for
dealing with it, but much normal practice does not use them. The
practical approaches, e.g. in the nuclear industry [13,15], are
essentially of two kinds: qualitative criteria for accepting evidence
(e.g. requiring that parameter value be derived from evidence that
is more clearly pertinent to the specific plant, the more critical the
parameters in question are) and numerical methods for perform-
ing either sensitivity analysis or calculations taking into account
the complete probability distributions that describe uncertainty on
the parameters. To cite the NUREG guidance document [13].

Because the impact of parameter uncertainty can be addressed
in terms of a probability distribution on the numerical results
of the PRA, it is straightforward to compare a point value, be it
the mean, the 95th percentile, or some other representative
value with an acceptance guideline or criterion … For most
regulatory applications, that value is specified to be the mean
[…] The mean values referred to are the arithmetic means of
the probability distributions that result from the propagation of
the uncertainties on the input parameters.

Uncertainty propagation methods will in theory produce accu-
rate results for any given distribution; but their application is
hard: apart from computational complexity, their fundamental

Nomenclature and abbreviations

A, B labels denoting the two components of a simple series
or parallel composite system

cdf cumulative distribution function of a random variable
dem. demands
E expectation operator as applied to random variable
fQ probability density function of pfd
i,I lower case i is the density function of leftward-moved

mass in the broadening operation of Section 5.1;
upper case I is an interval containing all of this mass
before it is moved left, under-barred to denote its
infimum (left-hand endpoint), and over-barred to
denote its supremum (right hand endpoint)

j,J lower case j is the density function of leftward-moved
mass in the broadening operation of Section 5.1;
upper case J is an interval containing all of this mass
before it is moved right, under-barred to denote its
infimum (left-hand endpoint), and over-barred to
denote its supremum (right hand endpoint)

k ratio of the sizes of the two masses moved apart and
also of their respective distances moved, so that mean
is preserved in broadening operation of Section 5.1

Λ; λ; λn Continuous-time failure rate parameter: as random
variable, instantiated value, or mean – analogously to
Q below

MTTF mean time to failure
pfd probability of failure per demand of component

or system
Pr probability
PRA probabilistic risk assessment
Q ; q; qn pfd, upper case Q when regarded as an uninstantiated

random variable; or lower case q to denote a particular
realised value; or starred qn to denote its mean value
E(Q)

R(t) reliability function R evaluated at usually discrete time
t demands. RðtÞ ¼ Pr(no failure occurs over first t
demands); sometimes with further semicolon-
separated parameter arguments. Also used for analo-
gous continuous time reliability

surv. survives
S a system subject to discrete demands on each of

which it may succeed or failure
t system operating time, usually discrete (number of

demands t ¼ 0;1;2;…) unless otherwise stated
U 1�Q , where Q is the pfd as a random variable
w.r.t. with respect to

1 This number of demands is usually a random variable, but we will treat the
problem with reference to a fixed t. Conclusions for a random number of demands
can be derived if required.
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