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A B S T R A C T

A problem of a planing surface moving steadily at finite Froude numbers in a laterally restricted seaway is
considered in this note. A linearized potential flow method based on point sources is applied to model hydro-
dynamics of a planing plate. Numerical results are obtained and presented for the lift coefficient and the center of
pressure. The variable parameters include the ratio of the channel width to the plate beam, beam-based Froude
number, and nominal aspect ratio of the plate. A comparison is shown with empirical correlations for unrestricted
seaway and with theoretical results for the limiting two-dimensional case.

1. Introduction

It is well known that restricted seaways can significantly affect hy-
drodynamics of traditional ship hulls (e.g., Tuck, 1978; Zhou et al.,
2012). The confined flow phenomena are also important for
air-supported marine vehicles (e.g., Doctors, 1993; Rozhdestvensky,
2000). Finite-depth effects on planing craft hydrodynamics were
discovered and studied in the past as well as recently (e.g., Green, 1935;
Morabito, 2013). Hence, it can be also presumed that laterally restricted
seaways may have a significant impact on the planing boat performance.
Determining the influence of the channel width on the lift coefficient and
the center of pressure of the simplest planing configuration, a flat plate, is
a subject of this communication. Somewhat related to the present
problem are studies of planing catamarans, where hydrodynamic in-
teractions between demi-hulls are found to modify hydrodynamic
properties of each demi-hull (e.g., Savitsky and Dingee, 1954; Bari and
Matveev, 2016).

A linearized potential-flow method is applied in this work to model
steady hydrodynamics of a planing plate in a channel. Three-dimensional
planing surfaces in unrestricted seaway were previously analyzed with
related linearized potential-flow approaches. Wang and Rispin (1971)
derived an analytical solution for a plate planing at high but finite Froude
numbers. Doctors (1974, 1975) and Wellicome and Jahangeer (1979)
employed a distribution of pressure elements on planing surfaces. Cheng
and Wellicome (1994) developed a pressure strip method for planing
hulls to achieve better numerical convergence. Xie at al. (2005) and
Wang and Day (2007) gave further recommendations on how to avoid
numerical instabilities in the pressure element methods.

In the present study, a distribution of point hydrodynamic sources
placed on the boundaries of the water domain is utilized. The numerical

model is built upon our previous modeling efforts that addressed various
configurations of planing hulls (e.g., Matveev and Ockfen, 2009; Bari and
Matveev, 2016), developed cavitating flows (Matveev and Miller, 2011),
and air-supported marine craft (Matveev, 2014).

2. Mathematical model

A general schematic for the numerical model is given in Fig. 1. A flat
plate with trim angle α is steadily planing on a water surface in a deep,
infinitely long channel parallel to the channel walls. The water flow is
considered to be inviscid and irrotational. At the channel boundaries
(z ¼ �W=2) the flow velocity normal to the walls must be zero. To satisfy
this condition, an equivalent problem of an infinite series of identical
plates planing parallel to each other can be analyzed instead of a single
channel with rigid walls; a fragment of such a setup is shown in Fig. 1c.
The numerical domain also has upstream and downstream boundaries,
whose dimensions are discussed below.

In this communication, only a brief outline of the mathematical
model is given, focusing on specifics of treating an infinite series of flow
strips. For other modeling details, one can refer to our previous publi-
cations (e.g., Matveev and Ockfen, 2009; Matveev, 2014; Bari and Mat-
veev, 2016).

The trim angle of the hull and the water surface slopes are assumed to
be small, so velocities of the disturbed flow (caused by the presence of the
plate) are much smaller than the incident flow velocity,U, with respect to
the plate. Then, the problem can be linearized, so that Bernoulli equation
on the water surface can be presented in a linear non-dimensional form as
follows,
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where Cp ¼ ðp� p0Þ=ðρ U2=2Þ is the pressure coefficient (zero on the free
water surface), p and p0 are the pressure on the water surface and above
the free surface, respectively, ρ is the water density, u is the x-component
of the velocity perturbation, yw is the water surface elevation, λ ¼
2π U2=g is the wavelength on the unconstrained free water surface, and g
is the gravity constant.

The flow disturbance under consideration can be modeled by a dis-
tribution of standard hydrodynamic sources placed on the water surface
(Fig. 1a and b). A velocity potential of each source satisfies the Laplace
equation in the water domain. The collocation points, where Eq. (1) is
fulfilled, are shifted upstream from the sources. This staggered arrange-
ment removes the wave reflection from the downstream boundary of a
numerical domain and ensures the radiation condition (Bertram, 2000).
Due to symmetry in this problem with respect to x-y plane and an infinite
number of identical parallel flow strips (associated with each planing
plate), the x-component of the velocity perturbation in the starboard part
of the central strip (0 < z < W=2) can be computed as follows,
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where ðxci ; zci Þ and ðxsj ; zsj Þ are the coordinates of the collocation point i
and the source j with intensity qj located in the starboard part of the

central strip, and ri;j;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxci � xsj Þ2 þ ðzci � ½zsj þ kW �Þ2

q
and Ri;j;k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxci � xsj Þ2 þ ðzci þ ½zsj þ kW �Þ2
q

are the distances between the considered

collocation point and all the sources (in all strips). Due to linearization,
the vertical distances of the sources and collocation points from the un-
disturbed water level are ignored in the expressions for distances. The

infinite summation in Eq. (2) accounts for the identical strips shifted
along z-axis by the integer number of the channel widths kW . In the
numerical implementation, however, one has to use a finite number of
strips, N; so k ¼ �N; :::;N. Determining the adequate quantity of strips
that must be included to achieve results almost the same as those with the
infinite number of strips is demonstrated in the next (Results) section.

Equation (1) represents the dynamic boundary condition for the
present problem. The linearized kinematic boundary condition on the
water surface follows from a relation between the source strengths and
the local water surface slope (e.g., Matveev, 2014),
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�
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ysi � ysi�1

xsi � xsi�1
; (3)

where qi�1 and qi are the source strengths of the upstream and down-
stream neighbors of the collocation point i, and Δx and Δz are the in-
tervals between the source locations in x and z directions. On the wetted
hull surface, the source intensities can be immediately found from the
given trim angle of the planing plate. Thus, the linear system of equations
(Eqs. (1)–(3)) can be formed. The unknowns include water surface ele-
vations outside the plate, pressure coefficients on the plate, source in-
tensities, and velocity perturbations. The lift force on the hull and the
center of pressure are found by simply integrating the obtained pressure
distribution on the plate wetted surface. The position of the center of
pressure, LP, is measured from the transom and the lift coefficient, CL, is
based on the plate beam,

CL ¼
P

CpΔxΔz
B2

; (4)

where the summation is carried out over the wetted plate area. The
current method allows us to evaluate the lift-induced drag; for a flat plate
it is equal to the lift multiplied by the trim angle. Other drag components

Fig. 1. Geometrical arrangement of the numerical model: (a) side view of a longitudinal section including planing plate with a schematic view of the disturbed
water surface, (b) top view of one flow strip restricted by channel walls, (c) top view of five parallel flow strips. Sources and collocation points are schematically
indicated by circles and squares, respectively; only a small number of them are shown. The x-axis is the symmetry line.
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