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A B S T R A C T

Although the conventional long baseline (LBL) positioning system has high positioning accuracy, it does not
properly account for the motion of autonomous underwater vehicles (AUVs) and thus causes error between the
time and the location of the signal sent compared to the signal received. This error affects the positioning accuracy
and real-time positioning of the system. In this study, we constructed a model based on an extended Kalman filter
(EKF) in an effort to resolve this problem. The model uses multiple-beacon ranging information, depth infor-
mation, and velocity information as the primary observations based on which it can manage any amount of
beacon distance information. The multi-beacon, EKF-based integrated navigation algorithm yielded results in
close agreement with experimental data; the system error was restrained and effectively converged. After data
pre-processing, the four beacon navigation systems reaches meter-level accuracy. Compared to the traditional LBL
positioning system, the integrated navigation algorithm is more accurate over a wider range. It can be used to
provide more stable and accurate position information for any given target in real time, making it very well-suited
to AUV integrated navigation systems with multiple beacons.

1. Introduction

Autonomous underwater vehicles (AUVs) play a significant role in a
wide array of civilian and military underwater applications(Tan et al.
(2011),Kalyan and Balasuriya (2004)). When the AUV works underwa-
ter, its navigation system provides high-precision absolute/relative
position information (Wang (2013a, b)). The position information is not
only used to determine spatial locations, but also as an important safe-
guard for overall effective AUV application and safe recovery. The sound
wave is the most effective carrier for transmitting information, making
underwater acoustic positioning systems (UAPSs) essential positioning
and navigation components of AUVs and remotely vechiles (ROVs)(Han
et al. (2016)). The AUV, which relies on an inertial navigation-dead
reckoning system, cannot perform with complete navigation accuracy
due to cumulative error. It is necessary to rely on an acoustic positioning
system to correct for cumulative error in the inertial navigation system
when the AUV works over long periods of time in the deep sea. (Allotta
et al. (2015),Matos and Cruz (2005)).

Although the conventional long baseline (LBL) positioning system has
high positioning accuracy(Li et al. (2015), Baccou et al. (2001)), it
ignores the influence of the underwater vehicles motion. This makes the
time and location of the signal sent different from those of the signal

received, which affect the vehicles positioning accuracy and capacity for
real-time positioning[N H Kussat and Chadwell, 2005,Lan (2007)]. The
Kalman Filter represents an effective approach to resolving this problem
(Chen and Wang, 2013,Wynn et al. (2014),Sabet et al. (2014)), as it is
currently a popular method for tracking target motion in many engi-
neering applications. It can effectively integrate redundant information
from a variety of external sensors to form a single observation system
with enhanced performance.

B. Allotta proposed a navigation algorithm for AUVs based on an
unscented Kalman filter which allows for the direct processing of highly
nonlinear and nondifferentiable systems(Allotta et al. (2016a)). Det-
weiler C and Leonard J proposed a global acoustic beacon joint time
synchronization alternative response mode which can be obtained
directly by a one-way distance value(Detweiler and Leonard, 2006,
Webster et al. (2010)). This method is suitable for systems that operate
for brief durations. Author(s)(Li (2016)) took the residual error as the
correction quantity based on the theory of ray acoustics and Bayesian
inversion to establish a motion compensation algorithm. Their algo-
rithm is suitable for systems with at least 0:1ms timing accuracy. Yiming
Chen proposed a neat-real-time(NRT), it can address the asynchronous
nature of LBL measurements as well as model nonlinearities. Because
the LBL positioning cycle in Chens paper is short, it almost has not error
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between the time and the location of the signal sent compared to the
signal received, so it is suitable for small AUVs in harbor environments
rather than larger scope. And because the influence of water flow, the
yaw error is large. Chen et al. (2016)).

In an effort to resolve the problems in LBL positioning systems, we
constructed an integrated navigation model based on an extended
Kalman filter (EKF). The integrated navigation model uses distance and
velocity as observations based on which it updates the position infor-
mation of the target when receiving the distance information of any
number of beacons. The solution model can guarantee a wide-ranging
and accurate navigation system. Below, we first introduce the basic
principle of LBL and its shortcomings. We then propose an EKF model
based on multi-beacon ranging tailored to the shortcomings of the LBL
system. Two methods are then established for treating measurement
data to reduce the positioning error and filtering divergence caused by
outliers. We verify the feasibility of this approach by experimental data
processing, then discuss the accuracy of the proposed navigation
system.

2. Navigation application of LBL positioning system

The LBL positioning system has a variety of solution models, the most
common of which is the spherical intersection model. The model uses
distance information as the measurement data, and underwater vessel
navigation problems are traditionally solved via the least square meth-
od(Cao et al. (2017)).

When the LBL is positioned for the underwater vehicles, the interro-
gation signal is sent periodically via a ranging unit mounted on the
vehicle after receiving the response signal of all the sound beacons. The
distance between the ranging unit and each sound beacon is obtained
according to the two-way propagation delay and the speed of sound; the
position of the acoustic beacon is then calculated according to the
geographical coordinates of the acoustic beacon. However, underwater
vehicles are usually in motion.

As shown in Fig. 1, when the underwater vehicle is in the signal
transmission to response process, the ranging unit in the signal trans-
mission and the reception time coordinates are different thus the
underwater vehicle to sound beacon and sound beacon to underwater
vehicle corresponding to the propagation time are not the same. The time
and position of the different beacon response signals received are
different because the distance between the target and each beacon is
different. The conventional LBL positioning model does not account for
the influence of the target motion, and the distance values corresponding
to half of the propagation delay are taken as the observed distance
information values. The location solution is obtained, then the actual
coordinates of the target are obtained.

Only Detweiler C, Leonard J, and Author(s) (Detweiler and Leonard,
2006) proposed a solution to the above problem. However, when
working in the deep sea for any long-term period, the battery life and the
coherence of the beacon clock offset affect the continuity and effective-
ness of the system. The dynamic positioning error is even larger if the
time measurement precision is insufficient.

In this study, we developed an EKF model based on multi-beacon
ranging. The motion model is established based on the analysis of the
target motion state; the moving state of the target, such as speed,
heading, and attitude, is integrated with the acoustic positioning data.
This reduces the influence of target motion on the positioning system is
reduced. The conventional Kalman filter is the minimum mean square
error estimate which applies to the target motion model and linear
Gaussian case of the observed model. However, in the navigation
system, the state equations and measurement equations are often
nonlinear which renders conventional Kalman filtering no longer
applicable.

The EKF is suitable for nonlinear weak estimation objects (Wang and
Wang, 2012), and the unscented Kalman filter is suitable for nonlinear
strong estimation objects (Khairnar et al. (2007)). AUVs move at uniform
and low speed. AUV's acceleration is very slow and its mobility is weak.
So the system motion model established with AUV is simple and the
measurement information of AUV is single. For these reason, EKF can be
used to meet system requirements(Allotta et al. (2016b),Modalavalasa
et al. (2015)).

3. EKF model based on multi-beacon distance measurement

3.1. Introduction to EKF

For a nonlinear system, the system state equation and measurement
equation are (Qin et al. (2012)):

Xk ¼ f ðXk�1; k � 1Þ þ Gk�1Wk�1; (1)

Zk ¼ hðXk; kÞ þ Vk; (2)

where f is an n-dimensional nonlinear vector functions, h is an
m-dimensional nonlinear vector function. Wk is the r-dimensional
random system noise distribution sequence, and Vk is the m-dimensional
measurement system noise sequence.

We can ignore higher-order terms above the first order based on
Taylor expansion of the state equation and measurement equation for the
nonlinear system, which allows the use the linearized equation approx-
imation nonlinear function. This yields the following formula:

Xk ¼ f ðXk ; k � 1ÞjbXk
þ ∂f ðXk ; k � 1Þ

∂XT
k�1

jbXk
ΔXk þ Gk�1Wk�1; (3)

Zk ¼ hðXk; kÞjbXk
þ ∂hðXk; kÞ

∂XT
k

jbXk
ΔXk þ Vk; (4)

In an actual system, if the initial state quantity bX 0 and initial
covariance P0 are known, the conventional Kalman Filter recursive
formula allows the estimated amount bXk of the state variable at time to
be recursively determined based on the measured value Zk at time k.

3.2. Modeling and construction of model based on EKF

AUVs and other underwater vehicles usually have highly precise
measuring facilities. In our subsequent calculations, the depth of infor-
mation is considered a known quantity and we only consider the target in
the horizontal state of motion.

Common motion models include the CV model, CA model, Singer
model, and current statistical model. Underwater vehicles are charac-
terized by weak maneuverability of linear motion, slow acceleration,Fig. 1. Effect of the underwater vehicles motion on long baseline positioning.
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