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A B S T R A C T

The finite-depth interaction theory (IT) introduced by Kagemoto H. and Yue (1986) enables one to drastically
speed up the computation of the added mass, damping and excitation force coefficients of a group (”farm”) of
floating bodies when compared to direct calculations with standard widely available boundary element method
(BEM) codes. An essential part of the theory is the calculation of two hydrodynamic operators, which characterize
the way a body diffracts and radiates waves, known as Diffraction Transfer Matrix (DTM) and Radiation Char-
acteristics (RC) respectively. Two different strategies to compute them for arbitrary geometries have been pro-
posed in the literature (Goo, J.-S. and Yoshida, 1990; McNatt J. C. et al., 2015). The purpose of this study is to
present the implementation of the former in the zeroth-order BEM solver NEMOH and to compare it with the
latter by providing an insight into the DTM and the RC of a truncated vertical circular cylinder and a square box. A
very good agreement between the hydrodynamic operators computed with both methodologies is obtained. In
addition, hydrodynamic coefficients generated by means of the IT are verified against direct NEMOH calculations
for two different array layouts. Results show the effect of hydrodynamic interactions as well as the importance of
the evanescent modes truncation for closely spaced configurations.

1. Introduction

Because of the limits of the energy conversion capacity of single de-
vices, it is nowadays well-accepted that commercial exploitation of wave
energy will require the deployment of wave energy converters (WECs) in
array. As the advancement of WEC technology continues, there is an
increasing interest in developing numerical tools to investigate how
WECs will interact with one another in the first generation farms.

It has been shown that wave interactions may affect the forces acting
upon the WECs and the energy production of the wave farm to varying
degrees depending on the layout (Budal, 1977; Falnes J. and Budal, 1982;
Falnes, 1984). Forces due to wave radiation and scattering in the array
can be well represented by matrices of linear radiation and excitation
force coefficients. However, due to memory and time restrictions, the
direct computation of these matrices for large arrays of bodies Oð100Þ is
beyond the capabilities of standard Boundary Element Method
(BEM) codes.

The methodology developed by Kagemoto H. and Yue (1986), known
as Direct Matrix Method interaction theory and that we shall refer to

herein as IT, combines the features of the Direct Matrix approach in
Spring B. H. and Monkmeyer P. (1974) and Simon (1982), and the
multiple-scattering technique by Twersky (1952) and Ohkusu (1974). It
enables one to accelerate the computation of the hydrodynamic co-
efficients, for multi-body arrays under certain circumstances, including
finite water depth and no vertical overlap. IT computations can generate
the coefficients for large arrays, which could not be computed directly
with a BEM code. The IT computation is based on mathematically char-
acterizing how an individual isolated device scatters and radiates waves.
For this, two hydrodynamic operators known as Diffraction Transfer
Matrix and Radiation Characteristics that we shall refer to herein as DTM
and RC respectively need to be computed. Kagemoto H. and Yue (1986)
provided a method to obtain the DTM and RC for axisymmetric bodies.
Goo, J.-S. and Yoshida (1990) developed an approach based on a cylin-
drical representation of the Green's function by Fenton (1978) to calcu-
late the elements of the DTM and RC for an arbitrary geometry using
a BEM.

The approach by Goo, J.-S. and Yoshida (1990) was used to study the
forces on the fixed (Chakrabarti, 2000) and floating (Chakrabarti, 2001)
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modules of an interconnected multi-moduled floating offshore structure
used by the US Navy. It was also employed by Peter M. A. and Meylan H.
(2004) to study the interactions between ocean waves and large fields of
ice floes in the marginal ice zone. For that, the extension of the theory to
infinite-depth was required. Based on Kagemoto H. and Yue (1986),
Kashiwagi (2000) derived a hierarchical interaction theory aimed at
studying hydrodynamic interactions among a great number of bodies in
very large floating structures. More recently, in the context of wave
attenuation in the marginal ice zone, Montiel F. et al. (2016) proposed an
approach known as slab-clustering method which combines the Direct
Matrix Method with a one dimension multiple scattering technique to
solve the multiple-scattering problem in arrays composed of thousands of
ice floes.

The methodology of Goo, J.-S. and Yoshida (1990) requires the
modification of the standard diffraction problem boundary conditions, as
well as access to the source strength distribution on the discretized
wetted surface of the body. This output is not accessible to the user in the
majority of standard BEM codes which only provide the standard hy-
drodynamic excitation forces and radiation coefficients after integration
over the body surface. As a result, the IT has been applied mainly in cases
where WEC geometries are such that an analytical expression of its hy-
drodynamic operators exists (Child B. and Venugopal, 2010; G€oteman,
M. et al., 2015). To overcome such limitation, McNatt J. C. et al. (2015)
developed and validated an alternative approach to the one of Goo, J.-S.
and Yoshida (1990) to calculate the DTM and RC using the standard
output of available BEM codes like WAMIT .1 A shortcoming of the
method provided by McNatt J. C. et al. (2015) is that it is unable to
include evanescent wave modes in the IT computation.

A key goal of this study is to verify the outputs of a new imple-
mentation of the method developed by Goo, J.-S. and Yoshida (1990) in
the open-source, BEM-code NEMOH 2 to the outputs using the method
developed by McNatt J. C. et al. (2015) by comparing the DTM and the
RC of two different geometries, a truncated vertical circular cylinder and
a cube. This comparison also serves to illustrate the frequency-dependent
patterns of the DTM and RC, which, despite their necessity in IT, have not
received much attention in literature.

In the following sections, we first present the solution to the Boundary
Value Problem (BVP) for an isolated body in cylindrical coordinates and
introduce the concept of partial cylindrical waves. We then consider the
multi-body BVP and its exact algebraic solution by means of the IT
method derived by Kagemoto H. and Yue (1986). The procedure to
obtain the radiation and excitation force coefficients from the solution to
the multiple-scattering problem is also presented. Following that, the
methodologies of Goo, J.-S. and Yoshida (1990) and McNatt J. C. et al.
(2015) for computing the DTM and the RC are presented and compared
in section 3. Details of the numerical implementation of the procedure by
Goo, J.-S. and Yoshida (1990) in the open-source BEM solver NEMOH are
given in section 4. Section 5 presents numerical results as the hydrody-
namic operators for a truncated vertical cylinder and a cube. Verifica-
tions of IT with direct BEM computations are made via comparison of the
free surface elevation and the hydrodynamic coefficients. These results
show the importance of selecting the correct truncation value for cases
where bodies are placed in close proximity, which has not been shown in
previous studies. Finally, verification of the hydrodynamic coefficients
computed by NEMOH is made by comparison of a semi-analytical solu-
tion for vertical cylinders in a particular array layout which includes near
trapped-modes.

2. Interaction theory

The Direct Matrix Method interaction theory (IT) by Kagemoto H. and
Yue (1986) is based on the linear potential flow theory (Newman, J.N,

1999). Thus, the constraints of linearity of the governing equations and
perfect fluid characteristics are assumed to be satisfied. The former ap-
plies as long as a small wave steepness and a small amplitude of the body
motions with respect to its characteristic dimension can be assumed. The
latter holds if the fluid can be characterized as inviscid and incom-
pressible and the flow as irrotational. In this case all the flow quantities of
interest can be derived from a scalar field known as velocity potential Φ
and such that v!¼ ∇Φ. If in addition, a harmonic time dependence is
assumed, the spatial and time variation of Φ can be decoupled as
Φ ¼ Refϕðx; y; zÞ e�iωtg, where ϕ is the complex spatial part of Φ, ðx; y; zÞ
are the spatial coordinates in a global Cartesian reference system,
i ¼ ffiffiffiffiffiffiffi�1

p
, ω the angular frequency and t the time.

For an array of floating bodies, and given the linearity of the problem,
the total potential in the fluid domain can be computed as a superposition
of the different forms of the velocity potential:

ϕ ¼ ϕI þ
XNb

j¼1

ϕS
j þ

XNb

j¼1

XDfj
k¼1

ϕR;k
j (1)

where ϕI is the ambient incident wave potential, ϕS
j is the scattered po-

tential by body j in the array when held fixed, ϕR;k
j is the radiated po-

tential by body j moving in its kth degree of freedom, Nb represents the
number of bodies in the array and Dfj stands for the number of degrees of
freedom k of body j.

2.1. Partial waves

In a large array, waves emanating from each body due to scattering
and radiation will propagate and interact with its neighbours. This will
lead to a succession of scattering events which are referred to as multiple-
scattering (Martin, 2006). In this context, the representation of the
scattered potential by body j can be described by the outgoing wave
solution to the BVP in cylindrical coordinates (a full derivation can be
found in Child (2011) 3.4.1):
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where Hð1Þ
m is the Hankel function of the first kind of order m (see

Fig. 1a,1b,1c), Km is the modified Bessel function of the second kind of
order m (see Fig. 1d,e,1f), ðAS

j Þnm are scattered complex coefficients,
subindices m and n are the modes representing the angular and depth
variation of the scattered potential respectively, d is the water depth,
ðzj; rj; θjÞ are the cylindrical coordinates local to body j and k0 and kn are

Fig. 1. Partial waves modes. Progressive term Hð1Þ
m ðrÞ (a, b, c); evanescent term KmðrÞ (d,

e, f).
1 www.wamit.com.
2 http://lheea.ec-nantes.fr/doku.php/emo/nemoh/start.
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