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A B S T R A C T

This paper focuses on the application of AUV in shallow-sea, which environment is more complicated than
deep-sea. Owing to independence of external signals, inertial navigation system (INS) has become the most
suitable navigation and positioning system for underwater vehicles. However, as the excessive reliance
on sensor data, the precision of INS can be affected by external environment, especially heading angles from
low-cost sensors such as attitude and heading reference system (AHRS) and digital compass are susceptible to
waves and magnetic interference. Therefore, how to use data from low-cost sensors becomes the key to
improving navigation performance. Optimally pruned extreme learning machine (OP-ELM) was presented as a
more robust and general methodology in 2010, which make it possible to fuse data by using a more reliable
method. In this paper, we propose an intelligent fusion module which is designed to obtain the full-noise model
for AUV. By judging the state of AHRS and TCM heading angles, intelligent fusion module combines full-noise
model with credible data by using OP-ELM to improve the accuracy of positioning and navigation. Our method
has been demonstrated by a range of real data, which RMSE can at most improve by 86.4% in complex
conditions than Extended Kalman Filter's.

1. Introduction

Autonomous underwater vehicle (AUV) is an indispensable instru-
ment, which is used in the complex underwater environment such
as the ocean (Lee et al., 2012), due to its flexibility and autonomy.
However, when AUV is in operation in shallow-sea, complex external
environment such as ferromagnetic substance will have a serious effect
on the direction of AUV. In addition, the strong ocean currents also
have certain influences on navigation. Therefore, it is meaningful to
overcome unfavorable factors in shallow-sea to achieve high-precision
navigation for AUV.

Although GPS is used as a significant sensor in unmanned vehicles
or unmanned aerial vehicles (UAVs), it is limited or even unusable for
AUV. However, simultaneous localization and mapping (SLAM)
(Cheeseman et al., 1987; Leonard et al., 1992; Thrun, 2002) can create a
consistent map in real time and acquire estimated positioning informa-
tion simultaneously even under water. Therefore, SLAM has received
considerable attention for underwater vehicles in unknown environment
(Newman and Leonard, 2003; Newman et al., 2005; Ribas et al., 2006),
which can provide feasible solution for the realization of autonomous
navigation.

Traditionally, there are lots of sensors installed in AUV, including
AHRS, digital compass, pressure sensor, GPS and doppler velocity log
(DVL), which are mainly used for navigation and positioning. Most of
them are used more frequently in motor vehicles and UAVs. However,
due to the low precision, the merely usage of low-cost sensors cannot
provide satisfactory navigation performance for AUV. We take AHRS
and digital compass as example. AHRS contains a plurality of axial
sensor, which can provide heading, pitch and roll angles for AUV.
However, surge, acceleration, deceleration and even other factors
will inevitably bring angle errors. Once the angles, especially heading
angles, are not accurate, navigation performance of AUV would not be
guaranteed. Even though most of AHRS can be input external global
navigation satellite system (GNSS) signal to correct angle errors during
the process of movement. Nevertheless, GPS is invalid in water so that
the compensation of angle errors cannot be achieved. And when it
comes to digital compass, it is vulnerable to interference of ferromag-
netic substance. Thus, merely using low-cost sensors data cannot meet
the demand for navigation of AUV. Therefore, many algorithms have
been proposed to improve the performance of AHRS and digital
compass. The main method is dynamic compensation (Blank et al.,
1997; Qiang et al., 2009; Schierbeek et al., 2003; Smith et al., 2003;
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V�cel�ak et al., 2006; Wang et al., 2014). There is no doubt that these
methods have played a role in improving the angle accuracy of digital
compass or AHRS. However, no matter temperature variation, change
of magnetic field or other factors, the vast majority of methods only
focus on only one factor, ignoring the effects of other factors. For
example, Robert B. Smith et al. (2003) proposed a three-axis algebraic
model which is used to numerically compensate for magnetic errors by
only measuring magnetic field values. Similarity, a temperature
compensation method was presented by Qiang Fu for the MEMS
accelerometer in the AHRS (Qiang et al., 2009).

Different from these improved methods, we propose an intelligent
fusion module which focuses on seeking out the full-noise model instead
of compensating for low-cost sensors. The intelligent fusion module
not only takes sensors' error into account, but also external environment.
OP-ELM (Miche et al., 2008a, 2010, 2008b) is presented by Miche Y et al.
Compared with Support Vector Machine (SVM) (Gunn, 1998; Smola and
Vapnik, 1997; Yang et al., 2002) and ELM (Huang et al., 2012, 2004,
2006), OP-ELM has been demonstrated to be more suitable to generate
the intelligent fusion module for AUV in this paper. In this paper, we take
heading angles which are from digital compass or AHRS for example.
Because some circumstance such as strong magnetic or violent acceler-
ation/deceleration may cause untrustworthy data for sensors, we judge
status of sensors' data and adopt different full-noise models which are
obtained by OP-ELM for credible sensors’ data in the intelligent
fusion module.

The paper is organized as follows: Section 2 is the full-noise
model using OP-ELM. The intelligent fusion module for AHRS and
digital compass will be presented in Section 3. In section 4, the result of
experiments with different datasets have verified the performance of the
proposed algorithm. Finally, we draw a conclusion of this work.

2. The full-noise model using OP-ELM

2.1. Traditional correction and the proposed full-noise model for low-cost
sensors

Current ways for the improvement of navigation performance for
AUV, which use low-cost sensors, are the compensation method.
Traditional corrections of digital compass mainly include system error
compensation, soft magnetic compensation and hard magnetic
compensation. The system error usually comes from manufacture error
and installation error of sensors. In general, system error is inherent in
the digital compass and does not change with external factors. Wei
Chen proposed an easy-to-use and computation-efficient correction,
utilizing the heading angles from GPS to estimate the parameters of this
model in the procedure (Miche et al., 2010). J. V�cel�ak focused on
seeking methods to compensate error caused by sensors misalignment,
cross-axis effect and drifts of temperature for sensors (V�cel�ak et al.,
2006). Although different methods were used to perform compass
compensation, the general principle of these methods is to get the
parameters of compensation by executing many complex experiments,
following with one-time compensation for compass. Hard magnetic
interference are generated by Magnetic dipole, and it will cause a de-
viation to output of digital compass. However, for the compass, the
toughest thing is to deal with soft magnetic interference. Soft magnetic
interference is caused by the distortion of the local magnetic field. In
the case of soft magnetic interference, the measured curve will be an
ellipse. For these magnetic interference in the environment, it is
necessary to determine its spatial relationship with sensor to compen-
sate the error of compass. Nevertheless, AUV, which need to go to
explore the unknown area, is impossible to obtain the exact location of

the magnetic interference substance. For AHRS, it has the problem of
accumulated angle error. What's more, acceleration/deceleration is
inevitable in AUV operation. And the usage of GNSS signal to correct
the angles in underwater is invalid for AHRS. Therefore, we need to
make reasonable use of low-cost sensors data to improve navigation
performance.

Different from the traditional angle correction, the proposed method
aims to improve the navigation performance by using data from low-cost
sensors directly, rather than only consider the compensation of these low-
cost sensors. As we mainly focus on large-scale marine investigation and
detection, therefore, the sway of AUV in local area is avoided as much as
possible. Assuming that TCM/AHRS is not affected by external environ-
ment and the accuracy of them is high enough, the heading angles of
TCM/AHRS will be consistent with course heading angles from GPS. In
fact, the factor of external interference and sensor errors are unavoidable.
So, only considering one factor, it is difficult to achieve high-precision
navigation. On the basis of these problems, we adopt neural network to
generate the full-noise model, which describe the relationship between
the sensors heading angles and course heading angles which comes from
GPS. The course heading angles which are obtained from GPS rather than
the vehicle heading angles are treated as the truth heading angles for
training the full-noise model, because the course heading angles from
GPS are the resultant heading angles which are generated by vehicle
heading angles and all the other influencing factors on heading angles,
such as magnetic interference and water current. This is why GPS
heading angles rather than vehicle heading angles are selected as
the truth heading angles both in the module and in the following
comparison.

As the certain number of samples can not cover the full range of
inputs, the generalization ability and prediction accuracy of the most
types of neural network can not be guaranteed. However, extreme
learning machine (ELM) have been proved that it can outperform other
conventional neural network in above circumstance (Xu et al., 2016).
ELM was proposed by Huang et al. and the main novelty introduced by
ELM is to randomly choose the input weights and biases of the hidden
nodes instead of learning these parameters. OP-ELM was presented as a
more robust methodology, which is based on the original ELM
algorithm. It is verified and demonstrated in the following part that the
performance of OP-ELM exceeds other neural network such as SVM and
ELM. The specific calculation method of full-noise model which uses
OP-ELM is in Section 2.2.

2.2. Review of OP-ELM

The full-noise model is treated as signal-hidden layer feed-forward
neural networks (SLFNs). The output of SLFNs with N hidden nodes
can be presented as:

fnðxÞ ¼
Xn

i¼1

βiGðωi; bi; xÞ x 2 Rn;ωi 2 Rn; β 2 Rn: (1)

where Gðωi; bi; xÞ is the ith output of hidden-layer neurons corresponding
to the input. β ¼ ½βi1; βi2;⋯; βim�T represents the connecting link between
the ith hidden-layer neurons and weight vector of output neurons.

For N arbitrary input sample, where xi ¼ ½xi1; xi2;⋯; xin� 2 Rn and ti ¼
½ti1; ti2;⋯; tin� 2 Rn , givenN hidden-layer neurons and activation function
Gðωi; bi; xÞ, βi;ωi and bi can be found out to make SLFNs close to the N
samples with zero error.

Xn

j¼1

βjG
�
ωj; bj; xi

� ¼ ti i ¼ 1; 2;⋯;N: (2)
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