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A B S T R A C T

The characteristics of wave breaking in shallow waters that are of interest include whether a wave will break, the
type of breaking that will occur, the breaking wave height, breaking depth, the position of breaking, the wave
setup, and the transformation of the broken wave for given offshore wave characteristics and given bottom
profile. Various methods have been proposed in the literature to estimate these wave-breaking characteristics.
Deo et al. (2003) used a neural network approach to predict the breaking wave height and breaking depth for
waves transforming over a range of simply sloped bottoms. The Deo et al. approach is extended here to predict
other characteristics of wave breaking, including the type of wave breaking, the position of breaking, the wave
setup, and the rate of dissipation of wave energy, in the case of waves impinging on a fringing reef. Observations
from a series of specially conducted laboratory experiments involving monochromatic waves impinging on an
idealized reef are used to develop and train respective models. The input parameters to the neural network models
are the ratio of offshore wave height to the shallow-water depth of the flat section of the reef, H1=hs and the wave
frequency parameter f

ffiffiffiffiffiffiffiffiffiffiffi
H1=g

p
. The breaker type classification model developed predicts the type of breaker with a

success rate of 96%, outperforming previously used criteria for classifying breaker types. The numeric prediction
models for the dimensionless position of wave breaking for plunging and spilling breakers, for wave setup, and for
the reduction in energy flux across the reef have performance ratings characterized by respective correlation
coefficients of 0.99, 0.82, 0.89, and 0.94. The modest value for the correlation between prediction and the actual
result for the position of breaking of spilling breakers is believed to be associated with inaccuracies in deter-
mination of the exact position of breaking and to difficulty in visually capturing spilling breakers in observations.
High correlation between predicted and actual values of the reduction in energy flux across the reef is achieved in
spite of the fact the model was trained using data from a wave tank that included partial reflection (characterized
by 7% mean deviation among non-breaking waves) from the downstream end of the tank. The method can be
extended to provide predictive models for consideration of a range of natural coastal conditions, random waves,
and various bottom profiles and complex geometry, based on training and testing of the models using repre-
sentative laboratory, field, and/or flow simulation, in support of accurate prediction of near-shore wave
phenomena.

1. Introduction

The propagation of ocean waves from deep to shallow water has
received special attention from engineers and researchers, in view of the
large amount of energy inherent in ocean waves. As a wave travels
onshore, its characteristics are transformed, leading to increase in the
wave steepness due to shoaling and the evolution of the energy distri-
bution over the frequency spectrum (Goda, 1975). This energy can be
impactful for nearshore structures or floating vessels. In such cases, it

may be desirable to have the waves break upstream of the area to be
protected, so that some of the wave energy is dissipated. That is why
breakwaters are constructed to protect floating vessels and nearshore
structures (Coastal Engineering Research Center, 1984). Another coastal
problem, which is analyzed in (Coastal Engineering Research Center,
1984) and is related to breaking waves, is sediment mobilization and
coastal erosion. A three-part work, presented in (Brocchini et al., 2004),
(Kennedy et al., 2006), and (Piattella et al., 2006), deals with the
breaking-wave-induced macrovortices. This work is based on
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experimental, computational and analytical methods, analyzing rip cur-
rent effects and themixing features of the shallow flows occurring around
submerged structures used for coastal protection. In many cases, the
natural environment can act as a breakwater where the main parameter
of interest is the bottom profile. In designing coastal defenses and
structures, it is necessary to predict the breaking wave characteristics of
waves, including the location where they will break, the breaking wave
height, the type of breaking that will occur, and the resulting wave setup.

The process of wave transformation and wave breaking is non-linear.
Stokes, cnoidal and stream function theories are used to describe wave
profiles preceding wave breakup (Dean and Dalrymple, 1991), (Dean,
1972), Wave evolution leading to wave breaking is typically followed
numerically usingmethods based on the Boussinesq equations (Yao et al.,
2012), (Peregrine, 1967). A Boussinesq model is derived in (Veeramony
and Svendsen, 2000) for predicting breaking waves and has been
extended in (Briganti et al., 2004) to incorporate turbulence associated
with a breaking wave in the surf zone. The model proposed by Yao et al.
in (Yao et al., 2012) for the wave profile is compared with their labo-
ratory experiments (Yao et al., 2009).

Studies based on the assumption of planar beach profiles with mild
constant slopes provide simplified (McCowan, 1894), (Goda, 1970), or
more advanced breaking criteria (Weggel, 1972), (Goda, 2010), for the
nearshore zone. A novel breaking index for fringing reefs extracted from
laboratory experiments is provided in (Yao et al., 2013). Extensive
research has been carried out to model the transformation of the wave
height, HðxÞ, as well as the wave setup, ηðxÞ, for irregular bottom shapes.
An approach based on an energy balance, and involving consideration of
one-dimensional gradient of energy flux is sometimes used (see for
example, (Dally et al., 1985), and (Kweon and Goda, 1996)). According
to (Dally et al., 1985) and (Yao et al., 2012), the effect of bottom friction
on the surf zone phenomena in fringing reef type profiles is negligible,
but is important in regions of mild slopes.

Versions of the models of the type described above for wave
transformation in the coastal region are used to account for various
factors, including wind and offshore wave conditions, type of bottom
profile, bottom material, and other features and processes. The models
typically require empirically determined parameters, derived through
statistical curve-fit to laboratory or field data. Simple empirical criteria
such as the wave height-to-depth ratio criterion for wave breaking, are
used under some conditions, with the breaking position measured
from the shore typically obtained from the ratio of the depth at
breaking to the beach slope (Dean and Dalrymple, 1991). Similarly the
surf similarity parameter is an empirically derived index to classify the
breaker type as a function of the bottom slope and breaking wave
steepness (Battjes, 1974). The criteria in both cases are provided for
planar beach profiles with mild constant slopes. An extensive experi-
mental study to judge and compare the validity of various criteria
including breaking type classification, breaking location, surf zone
width and the incipient breaker height and depth indices is considered
in (Yao et al., 2013).

Modern machine learning techniques have been proposed during the
last decade, incorporating data mining algorithms (Witten et al., 2011) to
train models that can provide good empirical models. The concept of a
neural network (NN) for wave forecasting was introduced by Deo et al. in
(Deo and Naidu, 1999) and (Deo et al., 2001). The idea was extended to
prediction of the wave height and depth at wave breaking (Deo and
Jagdale, 2003), using, a NN model that was trained based on classic
criteria for wave breaking provided in (Coastal Engineering Research
Center, 1984) and validated using several experimental data sets over a
broad range of conditions.

Here, predictive neural network models for parametric character-
ization of wave breaking over a fringing reef in the coastal region for
given offshore wave characteristics and bottom geometry are devel-
oped, based on the machine learning concept and laboratory experi-
ments. The characteristics considered include classification of the type
of wave breaker, the position of wave breaking, the wave setup

downstream of position of breaking and the rate of dissipation of wave
energy during breaking. The machine learning technique that is chosen
is the multilayer perceptron which is a type of feedforward artificial
NN (Baum, 1988). The networks are trained using observations from
laboratory experiments. The models for the wave characteristics are
distinguished (see (Witten et al., 2011)) as: the classification model, as
providing prediction for data available in non-numeric or nominal
value form (such as spilling, plunging, or non-breaking waves); and
numeric prediction models, as providing predictions for data available
in numeric form (such as location of breaking, wave setup and energy
flux). The proposed method is aimed to have the following advantages:
(1) the method is oblivious to whether the underlying physical process
is linear or nonlinear, with the multilayer perceptron accommodating
possible nonlinear interactions that may characterize the physical
processes through seeking a statistical relationship between the input
parameters and the resulting observed data; (2) a matrix formulation
expresses the NN in a compact form; (3) it facilitates simple extensions
of the training of the models through use of larger or more represen-
tative datasets for improvement and development of robust models; (4)
it facilitates consideration of a variety of realistic features which may
be difficult to model theoretically (e.g. offshore wind or current
characteristics, bottom material, etc.) through expansion of the input
attributes via a new training procedure that generates a fresh model;
(5) datasets can be generated from laboratory or field experiments or
numerical simulations, or their combination; (6) evaluation and
improvement of the model is achieved through field or laboratory
experiments; (7) nominal or non-numeric attributes can be included in
the form of representative integer numbers. The limitations of the
method include 1) the model is based on range of the data set used for
training the model, 2) a good distribution of samples in the training
data set is required, and 3) a NN model does not provide a single
regression equation relating inputs and outputs; instead the model
serves as the equation for the relationship.

2. Matrix formulation of the neural network

The machine learning technique chosen to predict breaking wave
phenomena is based on, a multilayer perceptron, a type of feedforward
artificial NN (Baum, 1988). The networks are trained based on experi-
mental datasets using a collection of open-source machine learning al-
gorithms called Weka (Witten et al., 2011) that is typically used for data
mining tasks. Weka contains tools for data pre-processing, classification,
regression, clustering, association rules, and visualization. Specifically, a
back-propagation algorithm of the Weka tool is utilized here. Details
regarding multilayer perceptrons and the training procedure are pro-
vided in (Witten et al., 2011). A compact mathematical formulation is
presented in this section. According to the multilayer perceptron
concept, three types of layers are identified: the input, the hidden and
the output layers. The input and output are single layers while the
hidden layer can be single or multiple. The following definitions, along
with the diagram in Fig. 1, establish the infrastructure for a compact
description of the NN based on a matrix notation. The notation is
defined below:

i ¼ 1;…;m hidden layer index
j ¼ 1;…; km node index
m number of hidden layers
ki number of nodes at layer i
k0 number of attributes
kmþ1 number of output nodes
a k0 � by � 1 attribute vector
xi ðki�1 þ 1Þ � by � 1 input vector at hidden layer i
si ki�1 � by � 1 output vector at hidden layer i
ΛðuÞ transformation operation for an n� by � 1 vector u to an n�
by � n diagonal matrix
Wi ki � by � ðki�1 þ 1Þ weight matrix at layer i
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