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A B S T R A C T

Fluid compressibility of liquids is often neglected in engineering design. However, the error incurred due to this
simplification is not well identified. This paper examines the influence of compressibility on the hydroelastic
vibration of plates in contact with fluid. An analytical solution for the free vibration of thick rectangular isotropic
plates coupled with a bounded compressible inviscid fluid domain is developed. Plate displacement theories with
arbitrary order are considered using the 2D Carrera Unified Formulation, which can obtain results very similar to
3D solutions. The eigenvalue problem is obtained by considering the kinetic and potential energy of both the fluid
and the plate. The displacement variables are evaluated using the Ritz method. A comparison of the results with
open literature and 3D finite element software is performed. Parametric studies are carried out in order to assess
the error due to neglecting fluid compressibility as a function of plate geometry, material properties and boundary
conditions. The influence of fluid domain size, density and sonic velocity is also assessed. The results indicate that
the error due to neglecting fluid compressibility is high when thick, square plates made of light, stiff materials and
with rigid boundary conditions are considered.

1. Introduction

The analysis of fluid-structure interaction is very important in many
engineering applications such as ships and structures containing fluid.
The vibrational behavior of plates in contact with fluid differ consider-
ably from the behavior in vacuum, so an accuratemathematical modeling
is required in order to fully understand the mechanical problem and
avoid the resonance phenomena. In this kind of problems, the analysis is
complex since a coupled hydrodynamic and structural solution is
required. Finite element solutions are capable of dealing with this
problem, but the high computational cost inhibits its use for preliminary
design. Semi-analytical methods help in understanding the interaction
problem, and provide accurate results with a low computational cost,
being adequate for the analysis of a large number of cases.

The analysis of a plate in contact with a fluid domain has been studied
by many researchers. Vibration of circular plates has been analyzed
considering an incompressible fluid domain (Jeong et al., 2009), a
compressible fluid domain (Jeong and Kim, 2005), and asymmetric
conditions (Tariverdilo et al., 2013). Viscosity has been introduced in the
analysis by Phan et al. (2013), (Atkinson and Manrique de Lara, 2007).
and (Kozlovsky, 2009). Finite element models using 2D plate elements
are capable of dealing with arbitrary geometries, and have been

developed by Kerboua et al. (2008) and Bermudez et al. (2001).
Closed-form solutions considering incompressible fluid and Mindlin
plates have been obtained by Hashemi et al. (2012). Hydroelastic anal-
ysis considering added mass factors has been investigated by Kwak and
Kim (1991), and in the paper by Kwak (1996). Analysis of the modal
energy associated with the fluid and the plate has been developed by
Gorman and Horacek (2007). Magnetic plates in contact with fluid have
been studied by Chang (2013), and in the work by Chang and Liu (2009).
Experimental results of vibrational behavior of structures in contact with
fluid can be found in Refs. (Carra et al., 2013; Kwon et al., 2013; Stenius
et al., 2016). Vibrational analysis of shells containing fluid has been
developed for cylindrical (Askari and Jeong, 2010; Thinh and Nguyen,
2016; Paak et al., 2014; Alijani and Amabili, 2014) and conical (Rah-
manian et al., 2016; Kerboua et al., 2010) geometries. Analysis of annular
plates coupled to a compressible fluid domain has been analyzed by
Jeong (2006).

Hydroelastic analysis of rectangular plates using the velocity poten-
tial and Kirchhoff plate theory was presented by Cheng and Zhou
(Cheung and Zhou, 2000). This model has been further developed in
order to consider Mindlin plate theory and stiffeners (Cho et al., 2015),
fluid compressibility (Liao and Ma, 2016), plates in elastic foundations
and with in-plane loads (Hashemi et al., 2010a, 2010b; Shahbaztabar and
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Ranji, 2016), excitation forces (Seung Cho et al., 2015) and geometric
non-linearity combined with sloshing effects (Khorshid and Farhadi,
2013). The vibrational behavior of multiple plates in contact with fluid
has been developed by Jeong and Kang (2013), being applicable for the
analysis of fuel assemblies in a reactor.

In the literature review, almost all the references model the plate
displacement using either the Kirchhoff plate theory or Mindlin plate
theory. However, more accurate results can be obtained by using higher
order shear deformation theories (HSDTs). Other possibilities exist, such
as the use of a modified Mindlin plate theory (Senjanovi�c et al., 2014). In
order to develop analytical models for a HSDT of arbitrary order, the
Carrera Unified Formulation (CUF) is of great help. This formulation is
known to obtain results similar to those obtained via 3D finite element
analysis, while retaining the computational efficiency of 1D and 2D

models. The formulation was presented by Carrera (2003), and has been
applied for the analysis of thermal stresses in plates (Carrera, 2002, 2005;
Robaldo et al., 2005), multifield problems, (Carrera et al., 2007, 2008a,
2009; Robaldo et al., 2006), functionally graded materials (Carrera et al.,
2008b), and shells (Cinefra et al., 2012, 2013). Functions used to inter-
polate the displacements in the thickness direction can be either simple
polynomials or more complex functions, as presented in Refs. (Carrera
et al., 2013; Filippi et al., 2016). A detailed description of the formulation
is given in Refs. (Carrera et al., 2011a, 2011b, 2014).

In order to approximate the displacement field of the plate, the Ritz
method is often used due to its flexibility in the choice of the boundary
conditions and low computational cost. Another common approach, the
finite element method, is not only computationally expensive but also
suffers from a phenomenon known as shear locking, in which a slow
convergence is observed when thin plates are analyzed. Reduced and
selective-reduced integration procedures have proven to be effective at
dealing with shear locking (Zienkiewicz et al., 1971; Hughes et al., 1978;
Hughes, 1980). However, these techniques are known to produce
spurious energy modes. On the other hand, if high-order interpolation
functions are used in the Ritz method, the influence of the shear locking
phenomenon is greatly reduced. The fundamentals of the Ritz method is
described in Refs. (Leissa, 2005; Gander and Wanner, 2012; Ilanko et al.,
2014). It is well known that the accuracy and stability of the results is
greatly dependent on the shape functions used. Trigonometric shape
functions have been used by Fazzolari and Carrera (2013a; 2011; 2014;
2013b) in order to analyze simply supported plates. Analysis of shells has
also developed, as given in Refs. (Fazzolari, 2016; Fazzolari and Bane-
rjee, 2014; Fazzolari and Carrera, 2013c). Using polynomial shape
functions, free vibration analysis of plates arbitrary boundary conditions
has been developed by Dozio (2013; 2011a; 2011b; 2010), Vescovini and
Dozio (2016), and in the work by Dozio and Carrera (2011).

The compressibility of liquids is often neglected, and the error
incurred due to this simplification on the hydroelastic vibration of plates
is not well identified. Refs. (Jeong and Kim, 2005) and (Liao and Ma,
2016) show that a significant discrepancy between incompressible and

Nomenclature

a,b Plate length and width
c,d Length and width of fluid domain
c0 Speed of sound in the fluid
Cij Constitutive matrix coefficients
D Flexural rigidity of the plate
Dp; Dnp; Dnz

Linear differential operators
e Depth of fluid domain
E Young's moduli
F Fluid mass matrix
Fτsij Fluid mass nucleus
Fτ Plate thickness expansion function
h Plate thickness
K Stiffness matrix
Kτsij Stiffness nucleus
j Imaginary unit
J Jacobian matrix
k Wavenumber
M Ritz expansion order
M Solid mass matrix
Mτsij Solid mass nucleus
N CUF Expansion order
p,q Indexes of trigonometric terms in x and y directions
P Polynomial degree of Ritz expansion
QW Total fluid energy

t Time
T Kinetic energy of plate
TW Kinetic energy of fluid
u; v;w Plate displacements in x; y; z coordinates
u Plate displacement vector
u Plate amplitude displacement vector
U Potential energy of plate
UW Potential energy of the fluid
W Amplitude of plate deflection in z coordinate
x,y,z Coordinates of plate
~x,~y,~z Coordinates of fluid domain
X;Y; Z Assumed solutions of the velocity potential in ~x,~y,~z axes
εn,εp Vector of in-plane and out-of-plane strain components
ϕ Velocity potential
Φ Amplitude of the velocity potential
ΓP,ΓW Plate and fluid area in the bottom
ν Poisson's ratio
ρ; ρW Density of structure and fluid
σn,σp Vector of in-plane and out-of-plane stress components
ω Frequency of vibration
ω Non-dimensional frequency of vibration
Ω Fluid domain
ξ; η Non-dimensional x and y coordinates of plate
~ξ,~η,~ζ Non-dimensional ~x,~y,~z coordinates of fluid domain
ψu,ψv,ψw Ritz shape functions of the plate displacements u,v,w
Ψ Ritz shape functions matrix
∇ Del operator

Fig. 1. Coordinate frame of the plate.
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