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a b s t r a c t

An analytical method is proposed to investigate the wave diffraction of linear waves with a uniform,
bottom-mounted cylinder with an arbitrary smooth cross-section. Based on the condition that the radius
function of the cylinder surface can be expanded into a Fourier series, the linear diffraction theory is
extended to solve the diffraction problem of linear waves in such large-scale structures. The present
method is first validated using a uniform vertical cylinder with cosine-type radial perturbations. Then,
the wave diffraction, wave force and wave run-up are investigated for such structures under wave attacks
with different rotation angles. Finally, this method is further extended to a practical engineering appli-
cation in a quasi-ellipse caisson foundation for a cross-strait bridge pylon. The results show that the
method that we have developed can be effectively used for predicting the wave force and wave run-up of
large-scale cylinders with arbitrary smooth cross-sections considering the wave diffraction effects.
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1. Introduction

In offshore engineering, an ocean wave is a major load that
threatens the safety of structures in a marine environment. For a
large-scale body, quantitative understanding of the effects of dif-
fraction due to wave-structure interactions is of primary im-
portance to determine the wave force acting on the coastal
structures when subjected to ocean wave actions. Linear diffrac-
tion theory is a common method to theoretically analyze the in-
teraction of a linear wave with a cylinder based on the potential
theory. An analytical solution to the interaction between linear

waves and a bottom-fixed vertical circular was initially proposed
by Havelock (1940) for the deep-water case. Later, this theory was
extended by MacCamy and Fuchs (1954) to a finite water depth.
The experimental study of Chakarabarti and Tam (1975) demon-
strated that the linear diffraction theory was reasonably accurate
to predict the wave force on a circular cylinder if ≤A h2 / 0.25 (A is
the wave amplitude, and h is the water depth) and ≤ ≤ka0 30 (k is
the wave number and a0 is the cylinder radius). Nevertheless, the
linear diffraction theory is no longer suitable for calculating the
wave action of a large body under a strong nonlinear wave.
Therefore, many studies were also conducted by researchers to
achieve an exact estimation of the wave force on a circular cylinder
under nonlinear wave actions (Chau and Taylor, 1992; Lighthill,
1979; Malenica and Molin, 1995; Molin, 1979; Newman, 1996).
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Except for a circular cylinder, the wave-structure interaction
problem of a bottom-fixed cylinder with some other specific
geometric shapes of the cross-section was also addressed by re-
searchers to obtain an analytical solution. Chen and Mei (1973)
presented an exact solution of wave forces acting on an elliptical
cylinder by the Mathieu function in elliptic cylindrical coordinates.
By this method, the complete solution is very complex due to the
requirement of calculating the infinite series of the Mathieu
function. To reduce the computational work, Williams (1985) de-
veloped two alternative methods for solving the same problem.

For the numerical methods to simulate wave loading on large-
scale objects with arbitrary shapes, Green's function plays an im-
portant role for the analysis of this class of problems. Recently, a
detailed history and discussion of Green's function were presented
by Duffy (2015). The original concept of Green's function came
from classical electrostatics, and this concept enjoyed great suc-
cess in the classic field of an irrotational water wave. Cauchy and
Poisson first applied Green's function to solve the two-dimen-
sional problem of the water wave surface in the nineteenth cen-
tury. Later, Green's function was studied extensively during the
1940s and early 1950s, and several alternative integral re-
presentations were given, as reviewed by Wehausen and Laitone
(1960). For the wave problem of the square caisson, Isaacson
(1978) developed a method by assuming a distribution of vertical
line wave sources over the submerged body surface. Mansour et al.
(2002) presented two methods to analyze the wave diffraction of
linear waves by a uniform vertical cylinder with cosine-type radial
perturbations. In this study, an analytical solution based on per-
turbation theory was developed for small perturbation amplitudes
of the circular cross-section. Nevertheless, a boundary element
solution, which is similar to the solution of Isaacson (1978), was
also presented in that study for the case of no restriction on the
magnitude of the perturbation amplitude based on Green's
theorem.

Furthermore, to overcome the defect that the wave source is
not effective for calculating the hydrodynamic forces when the
cylinder is oscillating, the local disturbance source was introduced
by Miao and Liu (1990) and Miao et al. (1993) to solve the hy-
drodynamic forces acting on a single cylinder with an arbitrary
cross-section vibration in still waters. In the study of Ghalayini and
Williams (1989), the first-order potential on a vertical cylinder
with arbitrary cross-section, expressed in terms of eigenfunction
expansions, was calculated by using Green's function. In this study,
the second-order wave force was also calculated by an efficient
numerical technique. For the wave loading acting on the arbitrary
shape, some researchers also addressed the numerical method to
solve this type of problem. Methods such as the finite element
method (Shankar et al., 1984), boundary element method (Au and
Brebbia, 1983; Zhu and Moule, 1994). Recently, Tao et al. (2007)
used the scaled boundary finite element method, which is a semi-
analytical method developed in the elasto-statics and elastody-
namics areas, to solve the boundary-value problem composed of
short-crested waves diffracted by a vertical circular cylinder. This
method was also utilized by Song et al. (2010) to analyze the water
wave interaction with multiple cylinders of arbitrary shape. The
analyzed results indicated that this method has a great advantage
in treating the cylinders with prismatic surface. Naserizadeh et al.
(2011) developed a BEM-FDM technique to solve the modified
mild slope equation by using the combination of the boundary
element method (BEM) and the finite difference method (FDM).
The main idea of this method was to utilize BEM in the exterior
domain with constant depth and FDM in the interior domain with
variable depth. The refraction and diffraction problem of waves
from submerged bottom mounted obstacles was analyzed and
compared well with experimental measurements. Focused on the
wave-power farm, McNatt et al. (2013) developed a new method

for computing the cylindrical wave-field coefficients for an arbi-
trary geometry. In this study, the Fourier transform and the or-
thogonality property of the depth dependence was employed, and
the circular-cylindrical section of the wave field was computed
with the boundary-element-method solver.

With a current trend of more cross-strait bridges being built in
deeper waters (Feng, 2013), the structural safety of coastal bridges
in a marine environments, especially for the long-span navigation
bridges with a large-size foundations, becomes more and more
important when the bridge is subjected to wave loading and the
combined action of waves and other types of natural hazards. For
most coastal bridges, some specific geometrical shapes rather than
a circular cylinder (such as a quasi-ellipse caisson) have been se-
lected for the foundation of the pylons. Understanding the wave-
structure interaction mechanism and establishing an accurate
method to predict the wave loading acting on such types of
foundations are important issues for researchers and engineers.
However, most of the analytical studies on the wave-structure
interaction on a bottom-fixed cylinder mainly focus on a cross-
section with circular and elliptical shapes.

In this article, the linear diffraction theory is extended to solve
the wave force and wave run-up on a bottom-fixed uniform cy-
linder with an arbitrary smooth cross-section in which the radius
function can be expanded into a Fourier series. The main contents
of this study are organized as follows. First, the definition of the
physical problem and the mathematical derivation of the analy-
tical solution of the scattered-wave potential is presented in Sec-
tion 2. Then, the proposed method is validated by the vertical
uniform cylinder with a noncircular section, and the comparative
results are introduced in Section 3.1. Focused on the circular cy-
linder with cosine-type perturbations, the wave diffraction, wave
force and wave run-up are investigated and discussed in Section
3.2 considering the effects of rotation angle, shape perturbation
and wave number. This method is further extended to a practical
engineering application with a quasi-ellipse caisson foundation of
a cross-strait bridge pylon in Section 3.3. The main findings of the
present work are summarized in the final section.

2. Mathematical formulation

Fig. 1 shows the schematic diagram of the wave diffraction
around a uniform surface-piercing cylinder, which is assumed to
be rigid and mounted at the bottom of the seedbed. In the analysis,
the origin of the coordinate system is set inside the cross section at
the still water level (SWL). In polar coordinates, r and θ are defined
in the horizontal plane, and the z-axis is perpendicular to the SWL
and positive upward.

Under the action of gravity, the water wave is assumed to be an
ideal fluid with incompressible, inviscid and irrotational char-
acteristics. Based on these conditions, the total velocity potential
of the fluid, θΦ(r z t, , , ), can be written in a complex form as

θ ϕ θ ϕ θΦ( ) = ( ) + ( ) ( )
ω−⎡⎣ ⎤⎦r z t r z r z e, , , , , , , 1I D

i t

in which ϕ θ( )r z, ,I and ϕ θ( )r z, ,D are the spatial velocity potential
of the incident wave and the scattered wave, respectively; ω is the
circular frequency of incident wave. In polar coordinates, the ve-
locity potential of the incident wave can be expressed as
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in which g is the gravity acceleration; A is the wave amplitude; k is
the wave number, which is related to the wave frequency through
the dispersion equation ω = ( )gk khtanh2 ; h is the water depth; and
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