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a b s t r a c t

The evolution of the Antarctic ice sheet for the last 200,000 years is simulated with a finite difference

thermomechanical model based on the shallow ice approximation. The model depends on the surface

temperature, the ice accumulation rate, the geothermal heat flux and the basal sliding coefficient, which

are estimated with large uncertainty. A second-order approximation of the model in a neighborhood of

the reference values for these parameters permits the computation of both local and variance-based

sensitivity indices. The results show the dominant effect of the surface temperature on the model

predictions.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of water at the base of the Antarctic ice sheet has
been revealed from several geophysical surveys [1] and requires that
the temperature at the bedrock is close to the melting point. The
melt rate is one of the terms of the mass balance of the Antarctic ice
sheet, which is a huge reservoir of (frozen) fresh water, and therefore
is an important parameter to assess the impacts of climate change on
the Earth. Since environmental conditions prevent from acquiring
direct information, the knowledge about the physical processes
occurring at the base of the Antarctic ice sheet is still incomplete.
Simulation models can be used to test different hypotheses and
to plan field or remote sensing surveys. In this paper it is illustrated
an example of a dynamical model of the ice sheets, which is applied
to simulate the evolution of the Antarctic ice sheet during the last
200,000 years before present.

Some of the input parameters might be affected by strong
uncertainty, which reflects into the model outcomes. Moreover,
the non-linearity of the physical processes makes it difficult to
identify which parameters are the most important to obtain
physically consistent results. Therefore the sensitivity analysis
aims not only to quantify the reliability of the model predictions,
but also to identify which parameters require a better estimate.

A thorough review of the concepts of sensitivity analysis can
be found in textbooks on this topic: see, e.g., [2] for a recently

updated work. Here a very short discussion of few basic ideas
related to the specific test presented in this paper is given.

Local measures of uncertainty, which are essentially based on
linear approximations of the model, can be easily computed even
for very complex non-linear models. A more advanced approach
to sensitivity analysis would require the computation of variance-
based sensitivity indicators, which are more relevant for the
above mentioned goals. However, such indices are difficult to be
computed for complex non-linear numerical models which
require not only great computing power, but also great care to
avoid numerical instabilities when the code runs with inconsis-
tent values of the input parameters.

As a first step toward a thorough sensitivity analysis, in this paper
the first-order sensitivity index is analytically computed with an
approximated model. In particular, the model output is approxi-
mated in a neighborhood of some input parameters as a second-
order function of the deviation from their reference values.

In the next section the model characteristics are summarised
and the results of its application are discussed. The third section is
devoted to the application of the sensitivity analysis for this model.
In the fourth section the results are illustrated and conclusive
remarks are given.

2. The model

A thermomechanical ice sheet model is based on the funda-
mental principles of the conservation of mass, linear and angular
momentum and energy, together with the appropriate constitutive
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equations, which describe the thermal and rheological behaviour of
ice, and with boundary conditions, which set the climatic forcings.

This model is applied to simulate the evolution of the Antarctic
ice sheet (Fig. 1) during the last 200,000 years.

2.1. Basic equations

The basic equations of an ice sheet model are briefly recalled
here. For a detailed discussion see, e.g., [3–5].

Assuming that the ice is incompressible, and considering
proper kinematic boundary conditions at the surface and at the
base (see, e.g., [6]), the mass conservation is expressed by:

@tH¼�r
0
� ðHu0 ÞþMs�Mb, ð1Þ

where u0 ¼ ðu,vÞ is the ice velocity in the horizontal plane, H¼ s�b

is the ice thickness (s and b are respectively the height above
mean sea level of the top and bottom surface of the ice sheet),
Ms is the surface accumulation rate, Mb is the basal melt rate,
u0 ¼H�1

R s
b u0ðzÞ dz denotes the horizontal velocity averaged ver-

tically over the ice thickness, and r0 ¼ ð@x,@yÞ.
Under the quasi-static approximation, the conservation of

linear momentum reduces to the following Stokes’ equations:

r � s¼ rg, ð2Þ

where s is the stress tensor, r is the ice density and g¼ ð0,0,�gÞ is
the gravity acceleration.

If melting is assumed to occur only at the ice sheet base, then
the temperature field is controlled by the following energy
conservation equation:

@tT ¼ wr2T�u � rTþS, ð3Þ

where T is the ice temperature, w is the thermal diffusivity of ice
and S is the strain heating. Eq. (3) shows that the temporal
variation of temperature is controlled by heat diffusion (first term
of the right-hand side), heat convection (second term) and strain
heating, that is the heat generated by friction during the ice
deformation (third term).

The constitutive equation applied for glacier ice is usually the
Glen’s law (see, e.g., [4]), which states that the relation between the

deviatoric stress and the strain rate is non-linear and depends on the
ice temperature. On the other hand, the heat equation (3) includes
convection and strain heating, so that the temperature depends on
the velocity field. Therefore the five scalar equation (1)–(3) are non-
linearly coupled with each other. This problem is referred to as
thermomechanical coupling. In order to reduce the complexity of
this non-linear thermomechanically coupled model, some common
assumptions (hydrostatic conditions and SIA – Shallow Ice Approx-
imation) have been introduced (see, e.g., [7]).

The equations have been discretised with a finite difference
scheme using a Crank–Nicolson method for the time evolution;
the strain heating and the convective terms are evaluated on a
staggered grid with an up-wind scheme (see [8] for details). The
model has been implemented with an original computer code
written in FORTRAN90 and has been validated by its application
to several synthetic case studies taken from the EISMINT experi-
ments [9,10].

2.2. Boundary conditions

A stress-free boundary condition is assumed at the ice sheet
surface, whereas the basal velocity is prescribed by a Weertman-
type sliding law, assuming it is non-zero only when the basal
temperature reaches the melting point:

u0b ¼�BsrgHr0s, ð4Þ

i.e., the basal velocity is proportional, through a basal sliding
coefficient Bs, to the vertical shear stresses at the base of the
ice sheet.

The boundary conditions of the energy equation (3) require
that the surface temperature Tsðx,y,tÞ is assigned, while at the
base it is necessary to distinguish between the situation of frozen
and wet ice-bedrock interface. When the basal temperature is
below the melting point (TboTpmp) the basal interface is frozen
and the basal velocity vanishes, so that all the geothermal heat
flux G is conducted through the ice, according to the following
Neumann boundary condition:

�k@zTjz ¼ b ¼ G, ð5Þ

where k is the thermal conductivity.
When the basal temperature reaches the melting point

(Tb ¼ Tpmp), instead, the heat balance at the ice-bedrock interface
includes also the frictional heating and the latent heat spent to
melt the ice, according to the following relation:

�k@zTjz ¼ b ¼ GþrgHu0b � r
0s�rLf Mb, ð6Þ

where Lf is the latent heat of fusion.

2.3. Input data of the model

The input data of the model include physical parameters of ice
(r, k, Lf, w) which are assumed to be known and constant and
some data which are estimated with greater uncertainty: the
basal topography b, the surface temperature Ts, the surface
accumulation rate Ms, the geothermal heat flux G and the basal
sliding coefficient Bs. For these parameters we define a reference
situation based on values proposed in the literature [10–14].

The basal topography is taken from [11], the surface tempera-
ture is given by [11]:

Tsðx
0,tÞ ¼ Ts0ðx

0,tÞþdTðtÞþbT ½sðx
0,tÞ�s0ðx

0Þ�,

where t is time before present, Ts0ðx0,tÞ is an estimate of the
present day surface temperature [11], dTðtÞ is the time variation
of the temperature for an ice core in the Vostok area (Fig. 2, from
[12]), s0 is an estimate of the present day surface of the ice sheet
and bT is the vertical gradient of the surface temperature.

Fig. 1. Digital elevation map of Antarctica [17] (contour lines of the surface height

in meters above mean sea level: equidistance 500 m) and location of subglacial

lakes [1,18].
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