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A B S T R A C T

In this paper, we have applied an efficient shifted second kind Chebyshev wavelet method (S2KCWM) to
vibrating dynamical models arising in mechanical systems such as vibration of circular membrane, damped
spring mass system and ship oscillatory motions. To the best of our knowledge, until now there is no rigorous
wavelet based solution has been reported for the vibrating dynamical models. The power of the manageable
method is confirmed. The wavelet solutions are compared with numerical simulations by MATLAB. Good
agreement between the solutions is presented in this paper. Some numerical examples are given to demonstrate
the validity and applicability of the proposed method. Moreover the use of Chebyshev wavelets is found to be
simple, efficient, flexible, convenient, less computation costs and computationally attractive.

1. Introduction

In recent years, membrane dynamics model is a classical problem in
mechanical vibrations. Among the several types of membranes, circular
membranes are the most widely studied due to their numerous
applications in engineering (Agarwal and D.O’Regan, 2003; Shin,
1995; Javidinejad, 2013; Ji- Ping and Xin-LI, 2006; Siedlecka et al.,
2012; Civalek and Gürses, 2009; Hsu, 2007; Chapra and Canale, 2002).
From the study of musical notes of percussion instruments, circular
membranes have been used to design diaphragms for condenser
microphones, model the dynamics of the human ear (Alsahlani and
Mukherjee, 2013), understand the vibration characteristics of mem-
brane mirrors and gossamer structures (Alsahlani and Mukherjee,
2013), measure surface tension (Alsahlani and Mukherjee, 2013;
Mgharbel et al., 2009), and design ink-jet printers (Alsahlani and
Mukherjee, 2013). The similarity between the differential equations of
membranes and waveguides motivated the study of circular mem-
branes with constraints in the 1970s and 1980s (Krenk and Schmidt,
1981). Sen et al., (2006) established the interpolation for nonlinear
boundary value problems (BVPs) in circular membrane with known
upper and lower solutions. Recently, Alsahlani and Ranjan Mukherjee
(Alsahlani and Mukherjee, 2013) had introduced the dynamics of a
circular membrane with an eccentric circular areal constraint.

Considerable attention has been directed toward the chaos, chaotic
systems and solutions of nonlinear oscillator differential equations
since they play crucial role in natural and physical simulations.
Surveying the literature shows that a variety of solution methods have

been developed so far to solve the duffing oscillator equation
(Cvetićanin, 2009; Trueba et al., 2000; Huang and Zhu, 2012; Kim
and Park, 2015; Nourazar and Mirzabeigy, 2013; Cveticanin, 2011;
Joseph and Minh-Nghi, 2005; Sharma et al., 2012; Zhu, 2014; Kaur
et al., 2014). Some researchers in their studies consider damping into
the duffing oscillator. When the duffing oscillator involves damping, the
amplitude of oscillation reduces over time and we have a non-
conservative system. Most analytical methods are unable to handle
non conservative oscillators. Our aim in the present study is to obtain
the solution of the duffing oscillator free response considering different
damping effects and with different initial conditions by the second kind
Chebyshev wavelet method and comparing the results with the results
of a numerical solution using the MATLAB.

Roll motion is a major concern of ship and offshore operators. The
major technical difficulties related to the roll motion of a floating body
are the nonlinear effects of roll damping (Huang and Zhu, 2012; Kim
and Park, 2015; Bulian, 2004). A highly nonlinear characteristic is
strongly involved in the ship roll motion models. It is necessary that the
dynamic stability of ships in realistic sea is dependent on its rolling
motion and therefore the investigation of ship's roll dynamics is most
crucial unlike other degrees of freedom of ship motion. For this
purpose, it is generally required to investigate ship's roll damping for
accurate and efficient prediction of its response to various loading
environments and development of control strategies: this is essential
for the design of ship-shaped structures. However, the determining of
the roll damping is difficult because of its strong nonlinearity.

Wavelet analysis has found their way into many different fields in
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science, engineering and medicine. It possesses many useful properties,
such as Compact support, orthogonality, dyadic, orthonormality and
multi-resolution analysis (MRA). Recently, wavelets have been applied
extensively for signal processing in communications and physics
research, and have proved to be a wonderful mathematical tool. After
discretizing the differential equations in a conventional way like the
finite difference approximation, wavelets can be used for algebraic
manipulations in the system of equations obtained which lead to better
condition number of the resulting system (Adibi and Assari, 2010; Li,
2011; Sohrabi, 2011; Mason and David, 2002; Hariharan et al., 2009;
Hariharan and Kannan, 2009, 2010; Ghasemi and Kajani, 2011; Abd-
Elhameed et al., 2013; Gh. et al., 2011; Barzkar et al., 2012; Hariharan
and Kannan, 2013; Hariharan, 2014a; Rajaraman and Hariharan,
2015; Hariharan and Rajaraman, 2013; Mahalakshmi et al., 2013;
Pirabaharan et al., 2015).

There is a growing interest in using various wavelets to study
problems, of greater computational complexity. Among the wavelet
transform families the Haar, Legendre and Chebyshev wavelets deserve
much attention. The basic idea of Chebyshev wavelet method (CWM) is
to convert the differential equations in to a system of algebraic
equations by the operational matrices of integral or derivative. The
main goal is to show how wavelets and multi-resolution analysis can be
applied for improving the method in terms of easy implementability
and achieving the rapidity of its convergence. Wavelets, as very well-
localized functions, are considerably useful for solving differential
equations and provide accurate solutions. Also, the wavelet technique
allows the creation of very fast algorithms when compared with the
algorithms ordinarily used (Hariharan et al., 2009; Hariharan and
Kannan, 2009, 2010). Recently, Hariharan and Kannan (Hariharan
and Kannan, 2014) reviewed the wavelet transforms methods for
solving a few reaction-diffusion equations arising in science and
engineering. In this paper, the shifted second kind Chebyshev wavelet
method (S2KCWM) is applied to vibrating circular membrane model
arising in mechanical vibrations. The method consists of reducing the
differential equations to a set of algebraic equations by first expanding
the candidate function as Chebyshev wavelets with unknown coeffi-
cients (Adibi and Assari, 2010; Li, 2011; Sohrabi, 2011; Mason and
David, 2002; Ghasemi and Kajani, 2011; Abd-Elhameed et al., 2013;
Abd-Elhameed et al., 2013; Gh. et al., 2011; Barzkar et al., 2012;
Babolian and Fattahzadeh, 2007; Zhu and Fan, 2012; Doha et al.,
2013; Doha et al., 2013; Hariharan, 2013). Recently, Heydari
et al.Heydari et al., 2015 have established the wavelet Galerkin method
for solving stochastic heat equation.

This paper is organized as follows. In Section 2, some properties of
shifted second kind Chebyshev polynomials are presented. Some
properties of shifted second kind Chebyshev wavelets are presented
in Section 3. Some numerical examples are given in Section 4.
Concluding remarks are given in Section 5.

2. Some main properties of the second kind Chebyshev
polynomials and their shifted form (Hariharan, 2014b)

It is well known that the second kind Chebyshev polynomials are
defined on [−1,1] by
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The following properties of second kind Chebyshev polynomials are
of fundamental importance in the sequel. These basis polynomials are

eigen functions of the following singular Sturm-Liouville equation.
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Theorem 2.1: The first derivative of second kind Chebyshev
polynomials is of the form.
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Definition (Hariharan, 2014b):
The shifted second kind Chebyshev polynomials are defined on

[0,1] byU x U x*( ) = (2 − 1)n n . All mentioned properties of the second
kind Chebyshev polynomials can be easily transformed for their
corresponding shifted form. It should be noted that the shifted second
kind Chebyshev polynomials are orthogonal with respect to the weight

function w x x x*( ) = − 2on the interval⎡⎣ ⎤⎦0, 1 ,
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Corollary (Hariharan, 2014b): The derivative of the shifted second
kind Chebyshev polynomial can be expressed as
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3. The second kind Chebyshev wavelets and their properties
(Hariharan, 2014b)

Second kind Chebyshev wavelets are denoted
byψ t ψ k n m t( ) = ( , , , )n m, , where k n, are positive integers and m is the
order of second kind Chebyshev polynomials.

Here t is the normalized time. They are defined on the interval [0,1]
by
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m=0,1,….. M, n=0,1,…2k−1.
A function f (t) defined over [0,1] may be expanded in terms second

kind Chebyshev wavelets as
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If the infinite series is truncated, then it can be written as
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where C and ψ (t) are 2k(M+1) x 1 column vectors defined by
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