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a b s t r a c t

Computation of distance to fault on an electrical transmission line is affected by many sources of

uncertainty, including parameter setting errors, measurement errors, as well as absence of information

and incomplete modelling of a system under fault condition. In this paper we propose an application of

the variance-based global sensitivity measures for evaluation of fault location algorithms. The main

goal of the evaluation is to identify factors and their interactions that contribute to the fault locator

output variability. This analysis is based on the results of Sparse Grid Regression. The method compiles

the Functional ANOVA model to represent fault locator output as a function of uncertain factors. The

ANOVA model provides a tool for interpretation and sensitivity analysis. In practice, such analysis can

help in functional performance tests, especially in: selection of the optimal fault location algorithm

(device) for a specific application, calibration process and building confidence in a fault location

function result. The paper concludes with an application example which demonstrates use of the

proposed methodology in testing and comparing some commonly used fault location algorithms. This

example is also used to demonstrate numerical efficiency for this type of application of the proposed

Sparse Grid Regression method in comparison to the Quasi-Monte Carlo approach.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Protective, control and event analysis functions (algorithms)
required in operation of an overhead transmission line are
implemented in a single device, called Intelligent Electronic
Device (IED). Fault-locating algorithms belong to the class of
event analysis functions. Commonly used algorithms are
described in the IEEE Standard C37.114-2004 [1]. The purpose
of distance to fault location function is to estimate the point
where a transmission line has faulted in order to repair and speed
up the return to service of such line. Furthermore, it provides
information used to confirm correct protection function operation
and to improve system design. The fault location function relies
on very complex hardware and software modules implemented in
IEDs. These modules include specialised high-resolution signal
processing techniques and in many situations high quality front-
end hardware that is comprised of special transducers and
Analogue to Digital Converters (ADCs) with high sampling fre-
quency and high resolution.

High accuracy and precision in estimation of distance to fault
location is needed for efficient dispatch of repair crews and fast
service restoration. Hence, it is very critical to select fault-locating

algorithms that are able to achieve the best possible performance
under specific filed conditions. Several factors affect the perfor-
mance of fault location algorithms [2]. These factors include the
system parameters not known exactly (representing certain
transmission line conditions), measurement errors as well as
those quantities that contain essential information but are not
measured. The factors can be classified as

(a) System factors: High-resistance fault with unknown resistance
value, not measured fault current infeeds (remote and other
tapped infeeds), not measured load current, not measured
pre-fault source condition.

(b) Setting factors: Inaccurate line modelling parameters, inaccu-
rate local and remote source modelling parameters, insuffi-
cient detail of a line model used in a fault location algorithm.

(c) Measurement factors: Error in measurement system composed
of transducers, ADCs and signal processing, that is affected by
measurement conditions such as very short segment of
recorded fault signals (40–80 ms) and presence of nuisance
components such as DC offset and high frequencies in those
signals.

Uncertainty in the above factors imposes a limit on the
confidence in fault location function results. If we consider that
variation in each factor can be described, it would be possible to
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obtain a quantitative assessment of the fault location uncertainty
together with fault location estimate [3]. This additional informa-
tion will improve dispatch of repair crews. In addition, it will be
useful to understand and quantify how uncertainty in fault
location can be divided up among different sources of uncertainty
(variation) represented by the above listed factors. This analysis
can be done as a part of the functional performance tests [4].
These tests are devised to determine the suitability of a fault
location function for a specific application. Test conditions are
derived from testing models that replicate accurately the beha-
viour of a power system under various fault conditions. The
optimal settings of the fault location function can be determined
based on the results of these tests.

In this paper, we present the Sparse Grid Regression (SGR)
technique that can be used in a systematic evaluation of fault-
locating algorithms as a part of the function performance test. The
test is performed by executing power system simulation model
and fault locator repeatedly for a large number of factor values
sampled from a specified grid of factor points (factor space). For
each point in the factor space, the power system model produces
voltages and currents at the fault locator device measurement
connections. These values are passed to the fault locator function
and distance-to-fault results are collected. It is assumed that a
smooth and continuous function is sufficient in modelling depen-
dence of distance-to-fault on input factors. A dimension d of this
function is equal to the number of input factors. For the purpose
of formulating the SGR method, it is useful to represent this
function using the finite dimension-wise expansion with 2d

terms, called the Functional Analysis of Variance (ANOVA) [5,6].
The expansion consists of a constant term plus a sum of d one-
dimensional component functions, each referred to as the main
effect of the corresponding factor, and a sum of multi-dimen-
sional component functions that represent interactions between
different dimensions. The Functional ANOVA is unique represen-
tation if the line integrals of every component function over any
of its own variables (i.e. factors) are equal to zero [6]. In such an
expansion all component functions are orthogonal. This condition
is achieved by representing the function using a linear combina-
tion of tensor products of the orthogonal Legendre polynomials.
Because of the orthogonal basis, the coefficients in this expansion,
when squared, are directly related to the variance-based global
sensitivity measures [5,6]. Hence, the goal of the SGR method is to
approximate the function linking input factor space and fault
locator output using the proposed expansion model. The coeffi-
cients of the expansion are used to perform the Global Sensitivity
Analysis (GSA) [6]. This analysis can determine factors that
mostly contribute to the fault locator output variability. Signifi-
cant interactions between factors can be also determined. In this
way the GSA can provide critical evaluation and comparison of
the fault location techniques as well as calibration and optimal
setting for specific application.

The paper is organised as follows. Section 2 describes the
Sparse Grid Regression method which is able to fit the Functional
ANOVA model. The model represents a fault locator output as a
multi-dimensional function of factors. The parameterisation of
the ANOVA model is via a linear combination of the multi-
dimensional basis functions, which are designed through a tensor
product of orthogonal polynomials. To estimate coefficients in
this expansion model we solve multi-dimensional integrals using
the Sparse Grid Integration (SGI) [7,8], and as a result we obtained
a novel Sparse Grid Regression method. The SGI rule is con-
structed using the approximation of the tensor product of
univariate quadratures. In contrast to the classical tensor product
approach where number of nodes and corresponding accuracy
levels of univariate quadrature rules for all dimensions are the
same [9], the SGI is based on a weighted combination of tensor

products of univariate quadrature rules with different accuracy
levels: a fine sequence of nodes (high accuracy level) in one
dimension is always combined with a coarse sequences in the
other dimensions (low accuracy levels). The total accuracy level
(i.e. a sum of accuracy levels of all univariate rules in a product) is
bounded in the SGI formula. The total number of nodes will be
significantly smaller than the number of nodes required in the
classical tensor product formula. This approximation works for
smooth functions which can be represented using Taylor’s series
expansion with the finite number of terms. In Section 3 we use
the GSA [6] as the fundamental technique in automated determi-
nation of the model structure. The initial basis size has to be
provided, and the GSA is used to reduce the initial basis size by
rejecting all insignificant terms. This method will automatically
determine which input factors and their interactions are relevant,
i.e. it provides the sensitivity measures that explain which factors
and interactions among factors have impact on a fault location
precision. Section 4 presents the application example results in
applying the SGR to fit the ANOVA function. Two fault locators
have been selected for this study and their performance has been
compared using the GSA. For comparison we applied additionally
the Quasi-Monte Carlo approach in the regression procedure [5].
Results of this experiment show that the proposed SGR approach
achieves the same approximation accuracy as the regression
based on the Quasi-Monte Carlo with the significantly reduced
number of the fault location tests. The small number of required
tests (samples) makes the SGR suitable for practical applications.
Each laboratory test of a fault location device requires few
minutes, so it is of high practical value to reduce number of tests.

2. Sparse grid regression

Sensitivities of a fault location algorithm output to various factors
(discussed in the Section 1) are obtained after fitting the surrogate
function f(x) with specified structure to sampled factor data and
corresponding locator output data. We use the SGR technique to fit
the surrogate function. This method combines the specific way of the
function parameterisation with the SGI [7,8], resulting in the
numerically efficient multi-dimensional function regression techni-
que, very well suited for our application. The proposed technique
relies on the assumption that factors are independent. Variation of a
factor value is represented with uncertainty interval that is obtained
from measured data or decided by experts. In this way, the factor
space is defined. Each sample in the factor space is represented as a
vector xARd (R is the set of real numbers and d is a dimension of the
factor space). For the purpose of computation, all of the factor
intervals have been mapped into unit hypercube defined as
Id
¼{xARd:0rxir1,1rird}.

The function f(x) parameterisation is based on the following
expansion:

f ðxÞ ¼
X

r

brcrðxÞ ð1Þ

where r¼(r1,r2,y,rd)A{0,1,2,y}d is the multi-index vector. To
each vector r in (1) corresponds a unique tensor product function
crðxÞ ¼

Qd
i ¼ 1 fri

ðxiÞ and a coefficient br. If we select an orthogo-
nal basis cr(x) on Id (i.e. fri

ðxiÞ,i¼ 1,2,. . .,d, are orthogonal poly-
nomials), coefficients br can be calculated by solving the following
multi-dimensional integrals:

br ¼

Z
Id

f ðxÞcrðxÞdx ð2Þ

The classical technique for numerical solution of the multi-
dimensional integral (2) is to extend one-dimensional quadrature
rules to multiple dimensions by applying a tensor product of one-
dimensional rules [9]. However, computing costs rise exponentially
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