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a b s t r a c t

Statistical properties of mechanically generated unidirectional nonlinear wave series are simulated with
the fully nonlinear Chalikov-Sheinin model, which is based on a non-stationary conformal surface-fol-
lowing coordinate transformation that reduces the principal equations of potential waves into two
simple evolutionary equations for the surface elevation and the velocity potential on the surface.
Meanwhile, the numerical simulations performed by the temporal version of modified nonlinear
Schrödinger equation (MNLS) are also compared with the laboratory experiments in this study. As a
result, except for the wave height distribution, Chalikov-Sheinin or simply called CS model performs a
little better in simulating the observed statistics than MNLS equation, particularly in the aspects of
fourth-order normalized cumulants and the intermediate probability of wave crest and trough ex-
ceedance distributions in the presence of strong nonlinearity.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

To determine the statistical properties of wave amplitudes is a
very important task in the study of surface gravity waves for the
reason that the probability of occurrence of large amplitude waves
is critical in a variety of engineering applications. For example, the
statistical distribution of crest elevations must be established with
care for an input to the wave load calculations, and the distribution
of wave troughs is of significance for the determination of the
maximum trough depth in the design of offshore platforms (Toffoli
et al., 2008).

Although the traditional linear theory predicts Gaussian sta-
tistics for the wave surface, it is commonly reported that the
surface elevation, for instance in deepwater condition, is slightly
non-Gaussian. In the frame of weakly nonlinear narrow-band
theory, it is often assumed that the wave field can be decomposed
into two parts: a superposition of free waves that satisfy the dis-
persion relation, and the nonlinear bound waves that do not sa-
tisfy the dispersion relation but are phase-locked to the free
waves. On one hand, the free waves are assumed to yield Gaussian
statistics and the nonlinear bound waves produce small correc-
tions to Gaussian statistics, known as Tayfun distribution (Tayfun,
1980). On the other hand, the nonlinear interactions among free

waves, called Benjamin-Feir instability (Benjamin and Feir, 1967)
or modulational instability (Zakharov, 1968), can give rise to a
significant deviation from Gaussian statistics and lead to increased
occurrence of freak waves in condition of narrow initial spectrum
(Shemer et al., 2010a, 2010b) and insignificant directional
spreading. Working together, the departure from normal dis-
tribution can be further enlarged, contributing to some new re-
lations among those fourth-order normalized cumulants (Zhang
et al., 2015a, 2015b). Hence, to capture the more subtle features of
surface waves, the fully nonlinear numerical model has to be
employed even though it will require considerable computational
resource.

Research on the numerical simulations of surface waves has
been made for a long time, and the most general approach to si-
mulate a motion with a free surface is based on a marker and cell
(MAC) method (Harlow and Welch, 1965), which can trace a
variable surface within a fixed grid with different orders of accu-
racy. This method is recently restricted to simulations over rela-
tively short-term periods and its accuracy can be increased sig-
nificantly if high resolution is possible. The advantage of this
method is that it can be used to simulate 3D rotational motion of
viscous fluids even for non-single value interface (Chalikov, 2005).

Although the fluid in nature is viscous and compressible, even
with a rotational motion sometimes, it is fortunate that most ob-
served properties of surface waves are reproduced well by means
of the potential theory. Ignoring the influence of viscosity and
assuming an incompressible condition, the primary advantage of
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the potential approximation is that the system of Euler equation is
reduced to Bernoulli's equation, and the conservation of mass
equation can be stated simply as Laplace equation. However, the
solution to the flow problem of surface wave motion is still very
complicated due to the nonlinear kinematic and dynamic bound-
ary conditions on the free surface, the location of which is un-
known at any given moment.

Another group of numerical methods are proposed on the basis
of traditional perturbation expansions, and normally combined
with Fourier transform method. In principle, these methods are
able to include arbitrary high order interaction (Dommermuth and
Yue, 1987; West et al., 1987). However, the number of required
Fourier modes in this scheme multiplies with the increasing
steepness. Indeed, these methods become inapplicable when
waves approach overturning.

Recently, on the foundation of conformal mapping of a finite
depth water domain, Chalikov and Sheinin (1996, 1998) developed
a numerical scheme for direct hydrodynamic modeling of 2D
nonlinear gravity and gravity-capillary periodic waves. For the
stationary problem, this mapping represents the classical complex
variable method originally developed by Stokes. For the nonsta-
tionary problem, the CS numerical approach allows rewriting the
principal equations of potential flow with a free surface in a sur-
face-following coordinate system. The velocity potential in the
entire domain can be represented by its Fourier expansion coef-
ficients on the free surface and the hydrodynamic system, without
any simplification, is expressed by two relatively simple evolu-
tionary equations that can be solved with a straightforward nu-
merical method.

Moreover, the capability of this approach is that the numerical
scheme permits simulating the propagation of Stokes wave with
an amplitude at 98% of the maximum for hundreds of periods
without noticeable distortions (Chalikov, 2005). Formally, con-
formal mapping exists up to the moment when an overturning
volume of water touches the surface. In such kind of evolutionary
process, the required number of Fourier modes has to be quickly
increased. Without taking special measures such as smoothing, the
numerical simulation will terminate much earlier due to strong
crest instability (Longuet-Higgins, 1996), manifested by splitting of
the falling volume into two phases, which is obviously non-
potential.

In the present study, CS model was used to simulate unidirec-
tional surface waves, mechanically generated in the wave basin of
Marintek. Besides, considering that the modified nonlinear
Schrödinger equation (MNLS) is particularly suitable to investigate
wave statistics, which requires the calculation of many realizations
of a random sea state (Socquet-Juglard et al., 2005; Gramstad and
Trulsen, 2007), the temporal version of MNLS equation was also
adopted in the numerical simulation. Thus, a systematic analysis
could be made on the comparison of observed statistics and si-
mulated results given by different nonlinear numerical models.

This paper is organized as follows: Section 2 gives a concise
review on the numerical models and statistical theory used in this
paper; Section 3 briefly describes the laboratory facilities of Mar-
intek, associated experimental setup and numerical comparison;
Section 4 is devoted to the detailed comparative analysis on the
statistical properties of the observed and simulated long-crested
wave fields; some important conclusions are summarized in the
Section 5.

2. Theory

2.1. Chalikov-Sheinin model

Considering the 2D periodic deepwater wave whose dynamic is

described by the principal potential equations, due to the peri-
odicity condition, the conformal mapping can be represented by
the Fourier series:
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where x and z are the Cartesian coordinates. ξ and ζ are the
conformal surface-following coordinates, in which H means water
depth depending on time τ and ηk are coefficients of Fourier ex-
pansion of η (ξ, τ) with respect to the new horizontal coordinate ξ.
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and M is the truncation number.
Apparently, the representation of Fourier transform with defi-

nition (4) is nontraditional but actually more convenient for cal-
culations with real numbers, as ( )ϑ = ϑξ −kk k and

( )∑ ϑ = − ∑ ϑξ −A kAk k k k.

Note that the definitions of coordinates ξ and ζ are expressed
on the Fourier coefficients of surface elevation. It then follows
from (Eqs. (1) and 2) that time derivatives xτ and zτ are connected
by Cauchy-Riemann relations.

In the new (ξ, ζ) coordinate, the Laplace equation still retains
its form due to conformity, while the kinematic and dynamic
boundary equations have been changed (Chalikov and Sheinin,
1998, 2005):
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where (Eqs. (6) and 7) are written for the surface ζ¼0 (so that
z¼η, as represented by Eq. (3)), and J is the Jacobian of the
transformation

= + = + ( )ξ ξ ζ ζJ x z x z . 82 2 2 2

In addition,
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and ( )φ Φ ζ= = 0 , denotes the velocity potential on the surface
η=z . Actually, ξt is a generalization of the Hilbert transform of ζt ,

which for ≠k 0 may be defined in Fourier space as

( ) ( )ξ ζ= ( )− kHcoth . 10t k t k

Finally, the new form of bottom boundary condition, which
assumes vanishing of vertical velocity at the bottom, is given

( )Φ ξ ζ τ= − = ( )ζ H, , 0. 11

The solution of Laplace Eq. (5) with boundary condition (11)
readily yields the Fourier expansion, which reduces the system
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