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a b s t r a c t

A damping plate attached to the floating structure has a distinct advantage in reducing the motion response
of a floating structure by increasing the added mass and damping. Analytical and experimental studies were
carried out to investigate the heave motion response of a floating cylinder according to the characteristics of
dual damping plates (DDPs), such as submergence depth and radius ratio. An analytical method using a
Matched Eigenfunction Expansion Method (MEEM) was developed for solving the radiation problem by a
heaving circular cylinder with DDPs in the context of linear potential theory. To confirm the present ana-
lytical solutions, a series of experiments for heave motion responses was conducted in a two-dimensional
wave tank in regular waves with varying wave frequencies. The analytical results were in good agreement
with the experimental results, and the heave motion response of the cylinder was decreased considerably
within the region of heave resonance frequency by installation of the proposed DDPs. By using the predictive
tools requiring less calculation time, the effect of damping plates as motion reduction devices for spar-type
offshore platforms can be assessed for various combinations of parameters such as the number, size, and
location of damping plates at the concept design stage.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An excessive heave motion is the result of a resonance that is
generated when the natural frequency of the floating structure
and the frequency of incident waves coincide. It can often cause
severe damage in risers or mooring systems of offshore platforms.
The basic concept of reducing the motion response of a floating
body is to increase the damping energy of the system by in-
creasing the radiation and viscous damping, or to move the natural
frequency of the structure out of the dominant frequency range of
the incident waves by increasing added mass. An appendage that
adheres to the structure for the purpose of reducing the motion of
the floating structure is referred to as a damping plate.

An analysis of hydrodynamic forces by the motion of a floating
structure has been carried out by many researchers. Havelock
(1955) analyzed the added mass and damping coefficient of a
sphere floating on a free surface using a multipole expansion
method. Mei and Black (1969) solved the radiation problem and
diffraction problem of a two-dimensional floating square struc-
ture. The scattering problem of a cylinder was dealt with by Gar-
rett (1971) and the radiation problemwas analyzed by Tung (1979)
and McIver and Evans (1984). In addition, Kritis (1979) applied the
hybrid method of Yeung (1975) to an axisymmetric body and gave

numerical results for a circular cylinder. Yeung (1981) gave the
added mass and damping of a vertical cylinder in finite-depth
waters.

Furthermore, many studies have been carried out for a circular
damping plate that is attached to the cylinder-type substructure.
Thiagarajan and Troesch (1998) observed the flow around the cy-
linder with a damping plate using the particle image velocimetry
(PIV) technique. Rho and Choi (2002) carried out model tests to
investigate the heave and pitch motion characteristics with a moon
pool, strakes and a damping plate of a spar platform. They also
confirmed Mathieu-type instability, which occurs when the pitch
natural period is twice the heave natural period. Tao and Cai (2004)
investigated the vortex shedding pattern and hydrodynamic forces
arising from the flow separation and vortex shedding around a
damping plate of a circular cylinder by solving the Navier-Stokes
equation. Tao et al. (2007) calculated viscous flow by a spar hull
with two solid damping plates of variable spacing using a finite
difference method. The results showed that a significant influence
of the spacing of the plates on the hydrodynamic forces was re-
vealed clearly when it was smaller than the critical value. Molin
(2001) proposed a theoretical model to derive the added mass and
damping of periodic arrays of perforated disks in unbounded fluid
domain. Molin and Nielsen (2004) also investigated the added mass
and damping of single perforated disk below the free surface using
the discharge equation that relates the pressure drop and relative
fluid velocity through the porous disk.
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Koh and Cho (2011) analyzed the hydrodynamic forces (added
mass and damping coefficient) acting on a cylinder with a
damping plate using the Matched Eigenfunction Expansion
Method (MEEM). Sudhakar and Nallayarasu (2013, 2014) in-
vestigated the influence of single and double damping plates on
the hydrodynamic response of a spar in regular and irregular
waves by experimental studies.

In this study, the heave motion response of the cylinder was
examined according to the variation of the characteristics of the
DDPs by means of the MEEM. In the MEEM calculation, the fluid
domain is divided into four regions, and the velocity potentials in
each region are expressed by the Fourier-Bessel series. The un-
known coefficients in each region are determined by applying the
continuity of pressure and normal velocity at the matching
boundaries. The viscous damping is estimated from free decay test
by determining the ratio between successive amplitudes obtained
from the decaying oscillation in still water. Additionally, a ver-
ification was done for all analytical solutions through a model test
in regular waves. It was found that significant increases in the
viscous damping by attaching the DDPs lead to a considerable
reduction of the heave amplitude and a shift of the resonant fre-
quency to the low frequency region due to the increase in the
added mass. In particular, the closer distance between the upper
and bottom damping plate, increased the heave motion even more
than a cylinder with a single damping plate.

2. Mathematical formulation

We consider the radiation problem of a circular cylinder at-
tached with the DDPs in a water depth h. The radius of the cylinder
is assumed to be b and the draft to be d. The damping plates with
radius a are attached at the bottom and a depth of d0( )<d d0 . For
the analysis, the polar coordinate system ( )θr z, , is chosen with the
origin on the undisturbed free surface and the z-axis pointing
vertically upwards. The distance between the bottom of the cylin-
der and seabed is denoted by = −c h d, and the space of the plate
by = −c d d0 0. It is assumed that the fluid is incompressible and
inviscid, and the motion amplitudes and velocities are small enough
so that linear potential theory can be used. Assuming the harmonic
motion of the frequency ω, the velocity potential of the heave
motion can be written as { }Φ θ ωξϕ( ) = − ( ) ω−r z t i r z e, , , Re , i t ,
where ξ represents the complex displacement of the forced heave
oscillation. Because the body is axisymmetric, the radiation poten-
tial is a function of r and z .

To apply the MEEM, the fluid domain is divided into four regions
(Fig. 1): i.e. (I) the outer region ( )≥ − ≤ ≤r a h z, 0 , (II) the upper
inner region of the damping plate ( )≤ ≤ − ≤ ≤b r a d z, 00 , (III) the
mid inner region between plates ( )≤ ≤ − ≤ ≤ −b r a d z d, 0 , and
(IV) the lower inner region of the bottom damping plate
( )≤ ≤ − ≤ ≤ −r a h z d0 , .

In the outer region, the velocity potential satisfying the Laplace
equation and boundary conditions (free surface, sea bed, and ra-
diation) can be written as:
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where K0 is the modified Bessel functions of the second kind. The
eigenvalues k n1 are the solution of the following dispersion
equation.
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where =n 0 ( )= −k ik10 1 term corresponds to an outgoing waves

and ≥n 1 represents the evanescent waves.
The eigenfunctions ( )f zn1 in Eq. (1) are given by
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and also satisfy the following orthogonality.
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where δmn is the Kronecker delta defined by δ = 1mn if =m n, and
δ = 0mn if ≠m n.

In region (II), the radiation potential satisfies the Laplace
equation, free surface, and body boundary conditions at upper
damping plate ( )ϕ(∂ ∂ = = − )z z d/ 1, atII

0 and side wall of the cy-
linder ( )ϕ(∂ ∂ = = )r r b/ 0, atII . The velocity potential in regions (II)
can be written as the sum of a particular solution and a homo-
geneous solution.
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where I0 is the modified Bessel function of the first kind. The
prime appearing in the superscript denotes the derivative
with respect to the argument. The eigenvalues
( )= − = ⋯k ik k n, , 1, 2,n20 2 2 in region (II) are the roots of the

dispersion relation ( )ω= −k k d gtan /n n2 2 0
2 , and the normalized

vertical eigenfunctions ( )f zn2 are defined as follows:
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The eigenfunctions ( )f zn2 satisfy the orthogonal relation.
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The particular solutions in region (II) satisfying the in-
homogeneous body boundary condition can be written as follows:
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Fig. 1. Definition sketch of a circular cylinder with the DDPs.
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