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a b s t r a c t

Numerical simulation of FSI problems is one of the most important topics in computational fluid dy-
namics. In this paper, a particle-element contact algorithm is incorporated into coupling methods of
FEM-ISPH and FEM-WCSPH for solving FSI problems. The objective of contact algorithm is to adjust
positions and normal velocities of slave particles and master nodes by conservation of linear momentum
and angular momentum. Compared with particle–particle contact algorithm, which is based on contact
force of Monaghan boundary condition, the calculation of contact force is not required in the present
contact algorithm. Moreover, correction algorithms of Yildiz et al. are used for both WCSPH and ISPH to
treat noises in fluid field and improve the accuracy of numerical simulations. Numerical examples in-
vestigate the comparison of particle-element contact algorithm and commonly used particle–particle
contact algorithm, and it indicates that the present contact algorithm is effective for FSI problems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid–Structure Interaction (FSI) is an important problem in
computational mechanics. For example, the drive to model non-
linear flutter response has spawned in computational aeroelastics
(Bennet and Edwards, 1998). The response of cardiac, arterial and
respiratory systems is crucial in the computational biomechanics
(R. van Loon and F. N. van de Vosse, 2010; Taylor and Figueroa,
2009). In recent years, many numerical methods have been pro-
posed for these FSI problems with complex geometry (Oxtoby and
Malan, 2012). Most of these numerical methods have been pro-
posed for FSI problems by Eulerian approach in fluid medium and
Lagrangian approach in solid medium (Morinishi and Fukui, 2012),
such as Arbitrary Lagrangian Eulerian (ALE) method (Hirt et al.,
1974; Donea et al., 1982). However, ALE method is time consuming
to track the moving interface. Because Lagrangian meshless
methods can naturally handle moving interface with large de-
formations of fluid, pure Lagrangian method may be attractive for
FSI problems.

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian
meshless method, which has been originally developed by Lucy
(1977), Monaghan and Gingold (1983), Gingold and Monaghan
(1977). It has been successfully employed in engineering problems,
such as astrophysics, fluid mechanics, solid mechanics and etc.
Lucy (1977), Monaghan and Gingold (1983), Gingold and

Monaghan (1977), Messahel and Souli (2013) There are two
principal variants of SPH to impose the incompressibility con-
straint of fluid, namely Incompressible SPH (ISPH) and Weakly
Compressible SPH (WCSPH) methods. ISPH is based on velocity-
divergence-free projection method (Cummins and Rudman, 1999).
In this method, pressure term in the conservation of momentum
equation is obtained by solving a pressure Poisson equation. Ve-
locity-divergence-free projection method has been reported to
suffer from the accumulation of density error (Pozorski and Wa-
wreńczuk, 2002). Hu and Adams (2007) have proposed a stable
algorithm to obtain velocity-divergence-free field and constant
density by solving the Poisson equation twice in each time step.
Furthermore, Artificial Particle Displacement (APD) technique has
been employed to treat the particle clustering and accumulation of
density errors (Xu et al., 2009; Lee et al., 2008). The scheme of APD
can significantly improve accuracy by modifying the particle dis-
tributions without any further computational cost.

Compared with ISPH method, WCSPH is easy to program
(Shadloo et al., 2012). In WCSPH, random oscillation of pressure is
presented due to numerical noises. Lee et al., (2010) have illu-
strated that ISPH method produces more accurate pressure fields
than the WCSPH method for FSI problems. However, Hughes and
Graham (2010) have compared ISPH with WCSPH for free surface
water flows, they have concluded that both WCSPH and ISPH can
obtain the same accurate results. Shadloo et al. (2012) have ap-
plied APD to WCSPH and have compared it with ISPH, they have
concluded that WCSPH can provide accurate results of pressure.
Recently, Chen et al. (2013) have developed an improved WCSPH
using Moving Least Square approach (MLS) for density re-
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initialization, and they have concluded that the improved WCSPH
is more accurate and stable than ISPH for incompressible flows.
Ozbulut et al. (2013) have combined the density correction algo-
rithm, the APD algorithm and Monaghan′s XSPH velocity variant
algorithm for SPH method to improve accuracy of violent free
surface flows.

For FSI problems, the pressure and viscous stresses of the fluid
can cause a considerable deformation on the solid boundary,
which in turn affects the pressure, velocity and stress in fluid.
Because of the advantage of FEM for solving structural dynamics
and SPH for simulating free-surface fluid dynamics, FEM has been
coupled with SPH (FEM-SPH) to investigate FSI problems. FEM-
SPH model was proposed by Attaway et al. (1994) to study on
structure-structure impact problems. Zhang et al. (2011) have
presented an alternative FEM-SPH model for the dynamic impact
problem. FEM-SPH model has also been applied to fluid–structure
impact problems by Vuyst et al. (2005) and to free-surface flow
interaction with elastic structures by Groenenboom and Cart-
wright (2009), Fourey et al. (2010) and Yang et al. (2012). In their
works (Attaway et al., 1994; Vuyst et al., 2005; Groenenboom and
Cartwright, 2009; Fourey et al., 2010; Yang et al., 2012), the cal-
culation of contact force is required and it is very sensitive to
handle the interaction of interface. For particle–particle contact
algorithm, Vuyst et al. (2005) and Yang et al. (2012) used contact
potential or Monahan boundary condition to treat contact force in
SPH.

In this paper, particle-element contact algorithm based on
master–slave scheme is incorporated into the coupling methods of
FEM-ISPH and FEM-WCSPH for solving FSI problems, which is
originally proposed by Johnson and Stryk (2001) for explosion and
impact problems. The advantage of this contact algorithm is that
the contact force is not required in calculation. Moreover, in order
to treat the noises in fluid field and to improve the computational
accuracy of SPH, the correction algorithms proposed by Ozbulut
et al. (2013) are used, i.e., the treatments of density correction,
Monaghan’s XSPH velocity variant and APD algorithms are used
for WCSPH, the treatments of Monaghan’s XSPH velocity variant
and APD algorithms are used for ISPH. Finally, the present contact
algorithm is verified and compared with commonly used particle–
particle contact algorithm for FSI problems.

2. FEM formulations

In this work, the FEM model is based on updated Lagrangian
formulations for large-deformation structure (Johnson et al., 1997).
The principle of virtual power of FEM can be written as
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where δvi is virtual velocity, xj is the coordinate, σji is Cauchy Stress
tensor, bi and t̄i is body force and surface force, respectively. Fur-
thermore Γt is the boundary of traction, and Ωd is the area of
element. The governing equation of Eq. (1) is constructed in the
current configuration.

Using the shape function of polynomial interpolation, Eq. (1)
becomes
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where Γv is the boundary of velocity in the current configuration,
and NI is the shape function of node I. Then, FEM formulation is
given as
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where MIJ is the mass matrix, f iI
ext and f iI

int is the vector of
equivalent external force and internal force for the node I,
respectively.

3. SPH formulations

In this paper, governing equations of incompressible fluid are
the conservation of mass and linear momentum, which are ex-
pressed in Lagrangian form and given as following
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Applying particle approximation of SPH, discretization of gov-
erning Equations can be written as
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where →v is the velocity, p is the pressure, →g is the acceleration of
gravity, ρ is the density, m is the mass, and υo is the viscosity of
fluid. W is smoothing kernel function with a smooth length h, and
cubic Spline kernel function (Monaghan and Lattanzio, 1985) is
used in this paper. ∏ is the Monaghan artificial viscosity (Mon-
aghan, 1994), which is used to approximate the viscous stresses of
fluid, and
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where απ is the free parameter depending on problems, →r is po-
sition vector, ¯ = ( + )c c c /2ij i j is the average speed of sound,

ρ ρ ρ¯ = ( + )/2ij i j is the average density, → = → − →v v vij i j and
→ = → − →r r rij i j

is the relative velocity and position of particles, respectively. The
expression of viscous term is proposed by Morris et al. (1997)
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where η = h0.1 is a parameter to avoid zero denominator.
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