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a b s t r a c t

Quantification of margins and uncertainties (QMU) was originally introduced as a framework for

assessing confidence in nuclear weapons, and has since been extended to more general complex

systems. We show that when uncertainties are strictly bounded, QMU is equivalent to a graphical

model, provided confidence is identified with reliability one. In the more realistic case that

uncertainties have long tails, we find that QMU confidence is not always a good proxy for reliability,

as computed from the graphical model. We explore the possibility of defining QMU in terms of the

graphical model, rather than through the original procedures. The new formalism, which we call

probabilistic QMU, or pQMU, is fully probabilistic and mathematically consistent, and shows how QMU

may be interpreted within the framework of system reliability theory.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Quantification of margins and uncertainties (QMU) is a meth-
odology for assessing confidence in the performance of nuclear
weapons. It arose out of joint workshops on nuclear weapon
certification, held between Los Alamos National Laboratory
(LANL) and Lawrence Livermore National Laboratory (LLNL) in
June and December of 2001. It was described in a short paper, first
drafts of which were circulated in early 2002, by the responsible
Associate Directors at the two laboratories, Goodwin and Juzaitis [1];
we will refer to this paper as GJ. GJ is available online, and may be
regarded as the founding document of QMU, although it should be
noted that it was not intended as a definitive statement.

QMU was formally reviewed by the JASON Defense Advisory
Panel in 2005 [2], and by the National Research Council (NRC) of
the National Academy of Science (NAS) in 2008 [3]. Both of these
reviews have embraced the methodology as scientifically sound,
and have encouraged its further use and development. The
National Nuclear Security Administration (NNSA) has also
embraced QMU and proposed requiring its use in annual assess-
ments [4, p. 15].1 QMU was proposed as part of the certification
process for the Reliable Replacement Weapon (RRW), which was
to be deployed without underground testing [3].

In this paper, we will consider the status of QMU as a general
methodology for assessing confidence in complex engineered
systems. QMU is based on a simplified model of the operation

of the complex system. The operation is modularized into a set of
consecutive stages, each of which is essential to successful
operation. The success at each stage is determined by whether a
key quantity, known as a metric, falls within a certain range,
known as a performance gate. Confidence at each stage is
assessed in terms of a ratio between the maximum permissible
variation, or margin (M), for a metric, and its maximum antici-
pated variation, or uncertainty (U). (Precise definitions of M and U

are given below.) If this ‘‘confidence ratio’’ is greater than one at
all stages, one has confidence in the system; otherwise one does
not. QMU confidence is a binary, yes/no quantity; it is not a
probability.

The purpose of this paper is to provide both a critique of QMU,
in its original formulation, and a way forward for its future
development. We begin by showing that when uncertainties are
bounded, QMU confidence may be consistently interpreted as
perfect reliability. Realistic uncertainties, however, are not strictly
bounded, and frequently have long tails. We show that when
QMU is nevertheless applied in such situations, QMU confidence
does not always correspond very well to reliability. The main
difficulty is that QMU confidence can be present when the
reliability is low. The reason is that QMU effectively sets the tails
of the uncertainty distribution to zero, and is insensitive to the
possibility that these tail probabilities may accumulate, thereby
degrading system reliability.

To address these difficulties, we develop a fully probabilistic
interpretation of QMU, which we call pQMU, based on the
principles of Bayesian inference. This interpretation is a general-
ization of QMU, as originally conceived, in that it reproduces
the results of the original QMU when the uncertainties are
bounded. When uncertainties are not bounded, however, it
provides a different method of computing reliability, which is
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based on explicit probabilistic calculations, and not on the
confidence ratio.

The new interpretation, in fact, is simply the representation of
the complex system as a graphical model (GM) [5]. GMs provide a
flexible format for representing the simplified system model which
is at the heart of QMU. The key nodes represent system compo-
nents, or stages of system operation, and the connections between
these nodes are modeled by conditional probability distributions.
The performance gate is modeled as a binary variable, whose value
depends on the comparison of two random inputs.

GMs, which are also commonly called Bayesian networks
(BNs), were developed in the field of artificial intelligence [6],
were introduced into reliability theory by Barlow [7,8], Almond
[9], and others, and have been found to be increasingly useful,
particularly as more powerful computational techniques have
been developed for their solution. They provide a natural general-
ization of fault trees and reliability block diagrams (RBDs) [10]. In
a GM, the random variables need not be binary, or even discrete,
and the conditional probability distributions may be arbitrary,
rather than being simple logic gates.

QMU was developed from scratch, on the basis of deep
intuitions about a particular complex engineered system, and
was not initially derived from or interpreted in terms of existing
methodologies in probability or statistics. In GJ, for example, the
word reliability does not occur, and the word probability occurs
only once. In interpreting QMU as a GM, we bring QMU fully
within the fold of system reliability theory. Our interpretation
also relates QMU to some of the earlier methodologies used for
assessing reliability in nuclear weapons, which were based on
fault trees and RBDs [11,12]. Inasmuch as GMs generalize fault
trees and RBDs, QMU can be seen as a natural upgrade to earlier
methods, rather than as a completely new framework.

There have been a number of earlier attempts to clarify the
meaning of the QMU formalism [4,13–15]. The JASON and NRC
reviews, cited earlier, also contain extensive discussions of the
meaning and interpretation of QMU. We have chosen the GJ
framework as our starting point, rather than these more recent
efforts, because these later interpretations differ from each other,
both in emphasis and in technical detail. The GJ framework is
explained and developed in the 2003 paper by Sharp and Wood-
Schultz [16], and also in [17]. Ref. [17] also contains an early effort
to provide a probabilistic framework for QMU.

To avoid confusion, we emphasize that unless otherwise stated
or implied from the context, whenever we use the term QMU in this
paper, we will always mean the GJ framework, and more specifi-
cally, the GJ framework as we have interpreted it in Section 2. Our
comments about ‘‘QMU’’ may not apply to other interpretations of
QMU, some of which may have already addressed, in one way or
another, some of the concerns raised in this paper.

The NRC and JASON reviews both note considerable ambiguity
about the definition of QMU. In 2005, JASON noted that ‘‘There
is no general agreement on what QMU means to the various
scientific processes commonly used in science and technology, or
whether QMU is in some sense a new such process’’ [2, p. 25]. In
2008, the NRC notes continuing ambiguity: ‘‘Finding 3-4. The
QMU framework has yet to be clearly defined by the national
security laboratories collectively or individually’’ [3, p. 42].
I suggest that part of the difficulty in defining QMU traces to
the difficulties in understanding the original formulation in terms
of probability theory, difficulties which I attempt to clarify in
Sections 3.2 and 4. These difficulties have surfaced, for example,
in the recognition that M/U may not always be adequate for the
evaluation of performance gates [4, pp. 55–57; 3, pp. 27, 28]. The
problem with the M/U criterion is that it compresses all of
the information in the probability distribution down to a single
number, which may be too crude in some cases.

The way forward, in my view, is to identify the essential
features of QMU, realize these features in a consistent formalism,
and then interpret historical QMU as an approximation to that
formalism. Using this consistent formalism, it is possible to
analyze the nature of this approximation, and identify the
circumstances under which it is adequate and appropriate.

We begin, in Section 2, by providing a concise description of
QMU, as originally formulated by GJ. In Section 3, we show that
when uncertainties are bounded, the original formulation is iden-
tical to a probabilistic formulation in terms of graphical models,
provided that QMU confidence is identified with reliability one.
Section 4 provides a critique of the use of QMU, as originally
formulated, for unbounded uncertainties. We show that QMU
confidence, for a fixed choice of U, corresponds to a wide range of
reliabilities, ranging from 0.83 to 0.99997 in simple examples. In
Section 5, we explore the consequences of taking the graphical
model interpretation as primary. We call the resulting framework
‘‘probabilistic QMU’’ or pQMU. We conclude with a brief discussion.

The use of GMs in QMU was first proposed in 2008 in an earlier
version of this paper [18]. Independently, Urbina realized that
GMs provided a useful framework for QMU, and applied them in
the analysis of a specific engineered device in his 2009 Ph.D.
thesis from Vanderbilt [19]. The latter is highly recommended as
an illustration of how to apply these techniques to a concrete
problem.

2. QMU: background

What is QMU, exactly? As noted in the Introduction, the
definition of QMU has been a matter of considerable debate.
QMU was not initially defined as a statistical formalism, but as a
specific framework for a particular engineered system. We sketch
the QMU framework, following GJ. The framework contains two
parts: a simplified model of the system and a means for inferring
‘‘confidence’’ through an evaluation of the model.

In QMU, the performance of the system is broken into a series
of critical stages, each of which must be completed successfully in
order for the system as a whole to operate successfully. Each
critical stage is characterized by one or more metrics, which are
real-valued functions of the physical state, generically denoted by
the symbol m. In order to successfully pass through a stage, the
associated metric must have a value in a certain range; this range
is called a performance gate, with boundaries generically indicated
by g; the interval is indicated by G. Fig. 1 illustrates a performance
gate model with three critical stages.

The detailed anatomy of a performance gate is shown in Fig. 2.
The device is engineered so that the metric will lie in a certain
range when the device is operated under specified conditions;
this range is called the operating range (OR). We use the symbol g
generically for parameters that characterize the operating condi-
tions, and represent the specified conditions as the requirement
that gAG, for some set G. These conditions may involve the
internal configuration of the system or the external environment
under which it is operated. We use m0 to indicate the engineered
value, which depends on g: m0ðgÞ. The lower boundary of the OR,
m0,min, is the minimum of m0 over the specified conditions; the
upper boundary, m0,max, is the maximum.

Due to uncertainties, however, the device may not operate as
intended. We write

mðgÞ ¼m0ðgÞþe, ð1Þ

where mðgÞ is the actual value of the metric under conditions g,
and e is a random variable representing the difference between
the actual and engineered values. In defining the key quantities of
QMU, we focus on the lower gate boundary; similar quantities can
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