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a b s t r a c t

In this paper, a numerical wave flume is formed by combining the generalized finite difference method
(GFDM), the Runge–Kutta method, the semi-Lagrangian technique, the ramping function and the sponge
layer to efficiently and accurately analyze the propagation of nonlinear water waves. On the basis of
potential flow, the mathematical description of wave propagation is a time-dependent boundary value
problem, governed by a Laplace equation for velocity potential and two nonlinear free-surface boundary
conditions. The incident waves are introduced by imposing horizontal velocity along upstream boundary,
as a sponge layer is placed at the end of flume to absorb wave energy and avoid any reflection of waves.
The GFDM, a newly-developed meshless numerical method, and the second-order Runge–Kutta method
were, respectively, adopted for spatial and temporal discretizations of the moving-boundary problems.
The GFDM, which is truly free from mesh generation and numerical quadrature, is easy-to-program,
straightforward and efficient, especially for moving-boundary problems. Four numerical examples are
adopted in this paper to validate the stability, the efficiency and the accuracy of the proposed meshless
numerical wave flume. The GFDM results were compared with other numerical solutions and experi-
mental data to verify the merits and robustness of the proposed meshless numerical model.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The propagation of nonlinear water waves along free surface
plays an important role in the fields of costal and ocean en-
gineering. When the water waves are reaching a near-shore zone,
they may result in erosion and endanger the safety of coastal
structures. In addition, recent developments of mechanical design
for acquiring clean ocean energy from wave, tide and current
(Rahmati and Aggidis, 2016) are of primary importance due to
possible shortage of energy and electricity in the incoming future.
Furthermore, the interactions of water waves and ships motion
(Faltinsen, 1977; Fontaine and Tulin, 2001; Landrini et al., 2012;
Maruo and Song, 1994; Tulin and Wu, 1996; Vinje and Brevig,
1981) are quite important and interesting in naval engineering.
Hence, to discover the underlying physics of water-waves propa-
gation in the ocean is essential and urgent to academic and
industrial communities. Owing to the rapid developments of
computer software and hardware in the past half century, nu-
merical simulation becomes a good alternative in comparison with
experimental researches and theoretical studies for water-waves

problems. Therefore, in this paper, based on a newly-developed
meshless method, an efficient, accurate and stable numerical
scheme was proposed for the propagation of nonlinear water
waves in a two-dimensional numerical wave flume.

In the past decades, various numerical models (Gotoh et al.,
2013) have been proposed to simulate the generation and propa-
gation of non-linear water waves. For example, Li (2008) used the
projection method and sigma transformation for analyzing
the propagation of regular and irregular water waves, governed by
the Navier–Stokes equations. Since the nonlinearity and com-
plexity of the Navier–Stokes equations may induce difficulties in
numerical models, some simplified mathematical descriptions for
flow field are proposed under reasonable assumptions. One of the
main research directions is to adopt the theorem of potential flow,
so the flow fields of water-waves propagation in some studies are
assumed to be inviscid, irrotational and incompressible. For po-
tential flow, the governing equation for velocity potential is the
well-known Laplace equation, which is a linear second-order
partial differential equation. Using the assumption of potential
flow, Koo and Kim (2004, 2007) used the boundary element
method (BEM) and the fourth-order Runge–Kutta method to si-
mulate the propagation of nonlinear water waves and the inter-
action between waves and fully-floating bodies, while Christou
et al. (2008) adopted the multiple-fluxes BEM to model the
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interactions between non-linear water waves and rectangular
submerged breakwaters. In addition, under the assumptions of
potential flow there are various numerical schemes (Contento,
2000; Contento et al., 2001; Madsen, 1971; Ryu et al., 2003; Sen-
turk, 2011; Wu et al., 2006, 2008; Zhang et al., 2006), which have
been proposed to analyze problems of water-waves propagation.
Following these researches for water waves over past half century,
the flow field in the numerical wave flume in this paper is as-
sumed to be potential flow. From some of the important re-
searches (Grilli et al., 1989; Koo and Kim, 2004, 2007; Longuet-
Higgins and Cokelet, 1976; Wang et al., 1995), it is noticed that to
study the propagation of water waves by the BEM is a very clas-
sical and popular way. Though to use the BEM can reduce the
dimensionality of problem and simplify the numerical discretiza-
tion, the troublesome problems of full matrix, singular/hyper-
singular integrals and generation of line/surface mesh in the BEM
are still needed to be relieved. On the other hand, the meshless
numerical wave flume, proposed in this paper, is based on the
generalized finite difference method (GFDM). Therefore, the pro-
posed numerical flume can get rid of time-consuming tasks of
meshing and numerical quadrature. Although the dimensionality
of problem cannot be simplified, the conception of localization,
which means the star in the GFDM, can result in a sparse system of
linear algebraic equations, which can be efficiently resolved.

In the past few decades, numerous so-called meshless meth-
ods, which are free from time-consuming mesh generation, have
been proposed to analyze mathematical problems and engineering
applications, such as the boundary knot method (Chen, 2002), the
singular boundary method (Chen et al., 2009), the local radial basis
function collocation method (Chan and Fan, 2013; Senturk, 2011),
the GFDM (Benito et al., 2001, 2007; Chan et al., 2013; Fan et al.,
2014, 2015; Gavete et al., 2003; Li et al., 2014; Urena et al., 2012;
Zhang et al., 2016), etc. Among them, the GFDM is one of the most-
promising newly-developed domain-type meshless methods. The
explicit formulas of the GFDM to express the spatial derivatives by
using the moving-least-squares approach were proposed by Be-
nito et al. (2001). They also systematically examined the influence
of some factors in the GFDM on the numerical accuracy by nu-
merical experiments. The spatial derivatives can be expressed as
linear combinations of nearby function values with different
weightings. Since the GFDM is evolved from classical finite dif-
ference method, to enforce the satisfactions of governing equation
at every interior node and boundary condition at every boundary
node can accurately and stably acquire numerical solutions via a
collocation approach.

Recently, the GFDM has been successfully applied to accurately
and efficiently solve parabolic and hyperbolic partial differential
equations (Benito et al., 2007) as well as higher-order partial dif-
ferential equations (Urena et al., 2012). Additionally, Fan et al.
(2014, 2015) analyzed two-dimensional inverse problems in a
stable manner by adopting the GFDM, while Li et al. (2014) used
the GFDM to accurately solve the problems of density-driven
groundwater flow. Zhang et al. (2016) used the GFDM and the
explicit Euler method for numerical solutions of moving-boundary
problems of sloshing phenomenon. From the above descriptions, it
is worth mentioning that the newly-developed GFDM remained
the advantages from both of the mesh-based methods and the
meshless methods, so it has great potential to be applied to var-
ious engineering problems. In this paper, the GFDM is adopted for
spatial discretization of water-waves propagation in a numerical
wave flume.

In our previous study (Zhang et al., 2016), we considered only
rectangular flat-bottom domains for sloshing problems without
inlet and outlet boundary. From some comparisons, it is found that
the numerical scheme for temporal discretization should be sub-
stantially improved to enhance the numerical stability and enlarge

the time increment, though the combination of the GFDM and the
explicit Euler method can accurately simulate the moving-
boundary problems of sloshing phenomenon. In comparison with
the previous GFDM study of sloshing phenomenon (Zhang et al.,
2016), in the present paper the second-order Runge–Kutta method
was adopted for temporal discretization of the moving-boundary
problems of water-waves propagation. In addition, different var-
iations of seabed were considered to examine the interaction be-
tween water waves and irregular bottom profiles. Moreover, the
wavemaker and the sponge layer are introduced in the inlet and
outlet boundary sections, respectively. It can be noticed that the
proposed meshless wave flume is an extension research of the
previous GFDM study (Zhang et al., 2016). In this paper, the
treatments of inlet and outlet boundary, the time integrator with
better stability and the study of interactions between nonlinear
waves and seabed are all considered. In the proposed numerical
scheme, the method for temporal discretization and the semi-La-
grangian approach are used to update the spatial position of every
node and acquire the potential along free surface. Once the space
coordinate of every node is updated, the GFDM is employed to
efficiently deal with two-dimensional Laplace problem at the
present time step. The above-described procedures will be re-
peated until the terminal time is reached.

An accurate, efficient and stable numerical scheme is proposed
in this paper to simulate the propagation of nonlinear water waves
passed over flat and irregular bottom topography. The GFDM and
the second-order Runge–Kutta method are adopted for spatial and
temporal discretizations, while the semi-Lagrangian approach is
used to update the spatial coordinates of every node. The theory of
wavemaker for incident waves and a sponge layer for outgoing
waves are also combined in the proposed scheme. The mathe-
matical descriptions and the numerical methods are elaborated in
the following sections. Four numerical examples are provided to
examine the merits of the proposed meshless scheme. In the last
section, some conclusions and discussions are drawn according to
the provided results and comparisons.

2. Governing equation and boundary conditions

2.1. Governing equation, bottom boundary condition and free-sur-
face boundary conditions

In this paper, a two-dimensional water-waves propagation
problem in a rectangular numerical flume is considered. The Car-
tesian coordinate system ( )x z, is attached to this flume and the
origin is located at the left bottom corner of this flume, which is
demonstrated in Fig. 1. The depth of initial still water and the
length of flume are denoted by h and b, also depicted in Fig. 1. The
flow field in the proposed numerical flume is assumed to be po-
tential flow, so the flow field is governed by the Laplace equation
for velocity potential,
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Fig. 1. The schematic diagram of numerical wave flume.
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