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a b s t r a c t

We aim to analyze the effects of component level reliability data, including both catastrophic failures

and margin failures, on system level reliability. While much work has been done to analyze margins

and uncertainties at the component level, a gap exists in relating this component level analysis to the

system level. We apply methodologies for aggregating uncertainty from component level data to

quantify overall system uncertainty. We explore three approaches towards this goal, the classical

Method of Moments (MOM), Bayesian, and Bootstrap methods. These three approaches are used to

quantify the uncertainty in reliability for a system of mixed series and parallel components for which

both pass/fail and continuous margin data are available. This paper provides proof of concept that

uncertainty quantification methods can be constructed and applied to system reliability problems. In

addition, application of these methods demonstrates that the results from the three fundamentally

different approaches can be quite comparable.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Quantification of Margins and Uncertainties (QMU) analysis is
an approach towards computing and expressing component
margin relative to a requirement or relative to a threshold with
a connecting component. A QMU analysis may be as simple as a
histogram of a component’s performance output shown relative
to a performance requirement, with the margin expressed in
standard deviations from the mean. In more complex applica-
tions, such as components that have an age trend in their
performance data, the QMU analysis could involve a linear
regression against component age, along with uncertainty bands
around the regression line. In such QMU analysis we are generally
interested in making an end of life prediction.

When executing a QMU analysis we can express a compo-
nent’s capability in terms of K factors. K is defined as (margin/
uncertainty), or more explicitly as

K ¼ ½ðupper threshold�sample meanÞ=sample standard deviation�

for an upper threshold;

or

K ¼ ½ðsample mean-lower thresholdÞ=sample standard deviation�

for a lower threshold:

K provides a common measure of margin. Given a distribution
function fitted to the data, K also correlates to a fraction defective
(that is, fraction that fails to meet the requirement). If one has
data normally distributed (a big IF), K factors of 3 or greater are
considered adequate. As we often have data that is not normally
distributed, we examine an expected fraction defective instead in
evaluating the adequacy of the margin.

A QMU analysis is based upon critical performance variables
using data taken during lot acceptance, surveillance, flight testing,
and other sources. A typical QMU analysis spends most of the
initial resources in sorting through this data teasing out signifi-
cant factors that may influence the data, such as changes to
testers during the elapsed time the data was taken, trends during
production, test conditions, and lot-to-lot variation.
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Computing the margin (defined as data mean—requirement)
requires some definition of the requirement. To date this has
generally meant using a published requirement in an interface
definition or product acceptance specification. However, we have
lately advanced towards calculating joint probabilities between
the performance distributions and threshold distribution of two
connecting components in order to correctly understand the true
margin between the components.

To date, the Nuclear Weapons complex has conducted many
component level QMU analyses [1–5] but has not yet developed
ways to integrate these component level analyses into a frame-
work for making system level inferences. What impact does low
margin of a component have on the overall system reliability and
uncertainty? Being able to answer such a question allows us to
leverage QMU assessments to improve system level decisions, as
well as assess the impact of low component margins on overall
system level reliability and uncertainty. We can do this by
integrating margin insufficiency failure modes with quality defect
failure modes in a common model. By computing the overall
system uncertainty we get a measure of ‘‘confidence’’ in the
system that we can use as a decision tool in evaluating different
system projects and in identifying where additional testing
resources should be allocated.

Nuclear weapons are designed with multiple objectives that
include safety, security, and reliability. We limit our focus to
reliability, defined as the probability of success of the weapon
performing its intended function at the intended time given the
required temperature range, shock and vibration exposures,
altitude and speed of the release envelope and over the designed
lifetime of the weapon. The goal of the Department of Energy
(DOE)/National Nuclear Security Administration (NNSA) weapon
reliability assessment process is to provide a quantitative metric
for this assessment. More details about this process are given in
Wright and Bierbaum [6].

We typically use both system level and component level test
data in computing the system reliability, using a series/parallel
model of the critical events to compute the overall probability of
success. Component level failure modes (and data) lie behind
each of the critical events. Thus several component level failure
modes are combined using series/parallel models to compute the
probability of an event occurring successfully. Component level
failure modes are computed using failure data; thus the reliability
of an event is some series/parallel combination of component
reliabilities. In equation form, for two components joined in series
for a particular event, we have

Revent ¼ Rcomponent 1�Rcomponent 2

¼ ð1�Probðcomponent 1 failureÞÞð1�Probðcomponent 2 failureÞÞ

This paper demonstrates a proof of concept of three methods
for estimating system level reliability and uncertainty using
component-level data. The data used in the analyses presented
here consist of both catastrophic failures (pass/fail data) and
margin failures (continuous data). The analyses are applied to a
relatively simple system model, consisting of both mixed series
and parallel components. Three diverse methods (Method of
Moments, Bayesian, and Bootstrap) are used and the results from
each are compared to the NNSA system reliability point estimate
approach [7]. The example system model captures some key
features of the top-level models used by Sandia National Labora-
tories and Los Alamos National Laboratory to assess weapon
reliability. While this example uses a two level model (events
and component failure modes), all three approaches can be
applied on more complex systems (though with varying degrees
of difficulty) and are not restricted to two levels.

The NNSA approach, described in Section 2, is currently the
standard method used for reporting point estimates for system

reliability. Historically, point reliability estimates have sufficed to
support military operational planning. The NNSA Surveillance
Program has historically focused on detecting quality defects
early in the life of the stockpile rather than uncertainty measures
associated with the known failure modes and existing data.

With a mature stockpile, limited production opportunities, and
a now-extensive surveillance data base, understanding the resi-
dual uncertainty associated with known and measurable failure
modes has grown in importance. A key feature of QMU reliability
analyses is to focus not only on a point estimate of reliability, but
also on the uncertainty associated with the estimate. Under-
standing uncertainty can contribute to subsequent decision-
making. Hence the three methods presented here seek to com-
plement the NNSA point reliability and to provide a unified
mechanism for assessing system-level reliability (point estimates)
and reliability uncertainty (interval estimates) associated with
component-level catastrophic failures and margin failures. Each
method can measure the contribution of each failure source to the
overall system reliability uncertainty. Each method can also be
applied to a variety of system structures including mixed series/
parallel systems.

The first method that complements the NNSA point estimate
by adding appropriate uncertainty intervals is a classical Method
of Moments (MOM) approach. (See Kotz et al. [8] for a summary
discussion of the Method of Moments and an extensive list of
historical and more recent references.) This approach captures
and aggregates sampling uncertainties at the component level.
The method evaluates the mean and variance of the various
component-level reliability estimators and then propagates these
through the system level reliability equation. Simplifying
assumptions are made as to the distributional form of the system
reliability distribution to get an approximate value for the mean
and variance of the system reliability estimator. We then con-
struct a 90% confidence interval for the system reliability using an
equivalent Binomial distribution.

The second method presented applies some of the modern
computing-intensive approaches currently available. It is a Baye-
sian approach using Markov Chain Monte Carlo (MCMC) methods
to develop the system level distribution for reliability. This
approach selects a user-specified diffuse prior distribution for
each component, which is then updated based upon the data to
develop the posterior distribution. By this mechanism, both
sampling and other knowledge uncertainties can be captured,
although the specific example here emphasizes the former. The
individual component level reliability estimates are then com-
bined to obtain the system level reliability estimate with an
associated uncertainty propagated from the component distribu-
tions. We then construct a 90% credible interval for system relia-
bility using the computed system-level reliability distribution.

The third method also takes advantage of modern computing
power and considers resampling through a Bootstrap approach. It
re-samples the available data with replacement to develop the
non-parametric component and system level probability distribu-
tions. The resulting system-level distribution is used to construct
a 90% Bootstrap confidence interval for system reliability. This
method employs the fewest assumptions of the three approaches.

All the three approaches begin with a small number of basic
principles but then require a fair amount of mathematical machin-
ery to execute. All three can be complex, depending on the
complexity of the system under study. The MOM approach involves
substantial analytic manipulation of the equations. The Bayesian
approach is computationally intensive and relies on MCMC simula-
tion, with tools becoming more readily available in software
packages, such as R and WinBUGs. The Bootstrap approach is also
computationally intensive, but can be programmed into readily
available software such as Minitab or Matlab.
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