
Mixed aleatory-epistemic uncertainty quantification with stochastic
expansions and optimization-based interval estimation

M.S. Eldred a,�, L.P. Swiler a, G. Tang b

a Optimization and Uncertainty Quantification Department, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318, United States1

b Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, United States

a r t i c l e i n f o

Article history:

Received 24 March 2010

Received in revised form

17 November 2010

Accepted 20 November 2010
Available online 7 April 2011

Keywords:

Uncertainty quantification

Epistemic

Aleatory

Polynomial chaos expansion

Stochastic collocation

Interval optimization

Second-order probability

Dempster–Shafer evidence theory

a b s t r a c t

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on

response metrics of interest. These input uncertainties may be characterized as either aleatory

uncertainties, which are irreducible variabilities inherent in nature, or epistemic uncertainties, which

are reducible uncertainties resulting from a lack of knowledge. When both aleatory and epistemic

uncertainties are mixed, it is desirable to maintain a segregation between aleatory and epistemic

sources such that it is easy to separate and identify their contributions to the total uncertainty. Current

production analyses for mixed UQ employ the use of nested sampling, where each sample taken from

epistemic distributions at the outer loop results in an inner loop sampling over the aleatory probability

distributions. This paper demonstrates new algorithmic capabilities for mixed UQ in which the analysis

procedures are more closely tailored to the requirements of aleatory and epistemic propagation.

Through the combination of stochastic expansions for computing statistics and interval optimization

for computing bounds, interval-valued probability, second-order probability, and Dempster–Shafer

evidence theory approaches to mixed UQ are shown to be more accurate and efficient than previously

achievable.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty quantification (UQ) is the process of determining
the effect of input uncertainties on response metrics of interest.
These input uncertainties may be characterized as either aleatory
uncertainties, which are irreducible variabilities inherent in
nature, or epistemic uncertainties, which are reducible uncertain-
ties resulting from a lack of knowledge. Since sufficient data is
available for characterizing aleatory uncertainties, probabilistic
methods are commonly used for computing response distribution
statistics based on input probability distribution specifications.
Conversely, for epistemic uncertainties, data is generally too
sparse to support objective probabilistic input descriptions, lead-
ing either to subjective probabilistic descriptions (e.g., assumed
priors in Bayesian analysis) or nonprobabilistic methods based on
interval specifications.

1.1. Probabilistic UQ for aleatory uncertainties

One technique for the analysis of aleatory uncertainties using
probabilistic methods is the polynomial chaos expansion (PCE)
approach to UQ. For smooth functions (i.e., analytic, infinitely
differentiable) in L2 (i.e., possessing finite variance), exponential
convergence rates can be obtained under order refinement for
integrated statistical quantities of interest such as mean, variance,
and probability. In this work, generalized polynomial chaos using
the Wiener-Askey scheme [1] provides a foundation in which
Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre
orthogonal polynomials are used for modeling the effect of
continuous uncertain variables described by normal, uniform,
exponential, beta, and gamma probability distributions, respec-
tively.2 These polynomial selections are optimal for these dis-
tribution types since they are orthogonal with respect to an inner
product weighting function that corresponds3 to the probability
density functions for these continuous distributions. Orthogonal
polynomials can be computed for any positive weight function, so
these five classical orthogonal polynomials may be augmented
with numerically generated polynomials for other probability
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but are not explored here.
3 Identical support range; weight differs by at most a constant factor.
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distributions (e.g., for lognormal, extreme value, and histogram
distributions). When independent standard random variables are
used (or computed through transformation), the variable expan-
sions are uncoupled, allowing the polynomial orthogonality
properties to be applied on a per-dimension basis. This allows
one to mix and match the polynomial basis used for each variable
without interference with the spectral projection scheme for the
response.

In non-intrusive PCE, simulations are used as black boxes and
the calculation of chaos expansion coefficients for response
metrics of interest is based on a set of simulation response
evaluations. To calculate these response PCE coefficients, two
primary classes of approaches have been proposed: spectral
projection and linear regression. The spectral projection approach
projects the response against each basis function using inner
products and employs the polynomial orthogonality properties to
extract each coefficient. Each inner product involves a multi-
dimensional integral over the support range of the weighting
function, which can be evaluated numerically using sampling,
tensor-product quadrature, Smolyak sparse grid [2], or cubature
[3] approaches. The linear regression approach uses a single linear
least squares solution to solve for the set of PCE coefficients which
best match a set of response values obtained from either a design
of computer experiments (‘‘point collocation’’ [4]) or from the
subset of tensor Gauss points with highest product weight
(‘‘probabilistic collocation’’ [5]).

Stochastic collocation [6] (SC) is a second stochastic expansion
approach that is closely related to PCE. As for PCE, exponential
convergence rates can be obtained under order refinement for
integrated statistical quantities of interest, provided that the
response functions are smooth with finite variance. The primary
distinction is that, whereas PCE estimates coefficients for known
orthogonal polynomial basis functions, SC forms Lagrange inter-
polation functions for known coefficients. Interpolation is per-
formed on structured grids such as tensor-product or sparse grids.
Starting from a tensor-product multidimensional Lagrange inter-
polant, we have the feature that the ith interpolation polynomial
is 1 at collocation point i and 0 for all other collocation points,
leading to the use of expansion coefficients that are just the
response values at each of the collocation points. Sparse inter-
polants are weighted sums of these tensor interpolants; however,
they are only interpolatory for sparse grids based on fully nested
rules and will exhibit some interpolation error at the collocation
points for sparse grids based on non-nested rules. A key to
maximizing performance with SC is performing collocation using
the Gauss points and weights from the same optimal orthogonal
polynomials used in PCE. For use of standard Gauss integration rules
(not nested variants such as Gauss–Patterson or Genz–Keister)
within tensor-product quadrature, tensor PCE expansions and tensor
SC interpolants are equivalent in that identical polynomial approx-
imations are generated [7]. Moreover, this equivalence can be
extended to sparse grids based on standard Gauss rules, provided
that a sparse PCE is formed based on a weighted sum of tensor
expansions [8].

Once PCE or SC representations have been obtained for a
response metric of interest, analytic expressions can be derived
for the moments of the expansion (from integration over the
aleatory/probabilistic random variables) as well as for various
sensitivity measures. Local sensitivities (i.e., derivatives) and
global sensitivities [9] (i.e., ANOVA, variance-based decomposi-
tion) of the response metrics may be computed with respect to
the expansion variables, and local sensitivities of probabilistic
response moments may be computed with respect to other
nonprobabilistic variables [10] (i.e., design or epistemic uncertain
variables). This latter capability allows for efficient design under
uncertainty and mixed aleatory-epistemic UQ formulations

involving moment control or bounding. This paper presents two
approaches for calculation of sensitivities of moments with
respect to nonprobabilistic dimensions (design or epistemic),
one involving response function expansions over both probabil-
istic and nonprobabilistic variables and one involving response
derivative expansions over only the probabilistic variables.

1.2. Mixed aleatory-epistemic UQ

A common approach to quantifying the effects of mixed
aleatory and epistemic uncertainties is to separate the aleatory
and epistemic variables and perform nested iteration. This
separation allows the use of strong probabilistic inferences where
possible, while employing alternative inferences only where
necessary. Traditionally, this has involved a nested sampling
approach, in which each sample drawn from the epistemic
variables on the outer loop results in a sampling over the aleatory
variables on the inner loop. In this fashion, we generate families
or ensembles of response distributions, where each distribution
represents the uncertainty generated by sampling over the
aleatory variables. Plotting an entire ensemble of cumulative
distribution functions (CDFs) in a ‘‘horsetail’’ plot allows one to
visualize the upper and lower bounds on the family of distribu-
tions (see Fig. 1). However, nested iteration can be computation-
ally expensive when it is implemented using two random
sampling loops. Consequently, when employing simulation-based
models, the nested sampling must often be under-resolved,
particularly at the epistemic outer loop, resulting in an under-
prediction of credible output ranges. Thus, the central goal in this
work is to preserve the advantages of uncertainty separation
(visualization, interpretation, and tailoring of inferences), but
address issues with accuracy and efficiency within the nested
iteration by closely tailoring the algorithmic approaches to the
propagation needs at each level.

We propose a new approach for performing mixed UQ in
which the inner-loop CDFs will be calculated using a stochastic
expansion method (using either aleatory expansions formed for
each instance of the epistemic variables or combined expansions
over both variable sets), and outer loop bounds can be computed
with optimization-based interval estimation (using either local
gradient-based or global nongradient-based optimizers). The
advantages of this approach can be significant, due to several
factors. First, the stochastic expansion methods can be much
more efficient than sampling for calculation of moments or CDF

1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RESPONSE

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Fig. 1. Example CDF ensemble. Commonly referred to as a ‘‘horsetail’’ plot.
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