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a b s t r a c t

The Method of Manufactured Universes is presented as a validation framework for uncertainty

quantification (UQ) methodologies and as a tool for exploring the effects of statistical and modeling

assumptions embedded in these methods. The framework calls for a manufactured reality from which

‘‘experimental’’ data are created (possibly with experimental error), an imperfect model (with

uncertain inputs) from which simulation results are created (possibly with numerical error), the

application of a system for quantifying uncertainties in model predictions, and an assessment of how

accurately those uncertainties are quantified. The application presented in this paper manufactures a

particle-transport ‘‘universe’’, models it using diffusion theory with uncertain material parameters, and

applies both Gaussian process and Bayesian MARS algorithms to make quantitative predictions about

new ‘‘experiments’’ within the manufactured reality. The results of this preliminary study indicate that,

even in a simple problem, the improper application of a specific UQ method or unrealized effects of a

modeling assumption may produce inaccurate predictions. We conclude that the validation framework

presented in this paper is a powerful and flexible tool for the investigation and understanding of UQ

methodologies.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The past decade has seen rapid advancement in complex
computational projects and increasing dependence on these
projects to support high-consequence decisions. An immediate
result of this trend is the need for improved uncertainty quanti-
fication (UQ) methods to accompany the scientific simulations
such that they deliver not only the best estimate of some quantity
of interest, but also a measure of uncertainty in that estimate.
One important example of UQ methods development is the
quantification of margins and uncertainties (QMU) framework
employed by the National Nuclear Security Administration’s
(NNSA) laboratories for assessment of the nation’s nuclear
weapon stockpile. This framework is a collection of methodolo-
gies designed to fuse decision inputs, such as experimental
results, simulation results, theoretical understandings, and expert
judgment, and their associated uncertainties in support of stock-
pile decisions.

Since its inception, the QMU framework has become an
increasingly important link between scientific activities and

stockpile stewardship priorities. Also of increasing importance,
however, is the requirement that decision-support frameworks,
like QMU, are themselves subjected to rigorous verification and
validation assessments. In 2006, Congress issued a mandate for
the National Academies to review the QMU framework and the
consistency of its implementation at the national security labora-
tories [1]. Simply put, the review committee was tasked with
deciding whether the combination of advanced simulation tech-
niques, existing testing data, expert judgment, and the QMU
framework appropriately support assessment and certification
decisions in the absence of underground testing.

This QMU initiative is an example of the fundamental chal-
lenge to the predictive science and engineering community: How
can we predict the behavior of complex systems using simulation
and how can we assess our predictive capabilities? In recent
years, the community released a number of predictive tools that
attempt to infer the relationship between simulation and reality
and use that inference to forecast uncertainty in predictions of
new simulations or experiments. Validation of these predictive
tools, however, is often hindered by little and/or uncertain
experimental data or overwhelming complexities associated with
real-world problems of interest. Nonetheless, validation is a
fundamental requirement that provides confidence in predictive
models and allows for an unbiased, knowledgeable evaluator to
determine the credibility of that confidence.
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With this motivation in mind, we present the Method of
Manufactured Universes (MMU) as a framework that facilitates
a comprehensive validation study of a given UQ method, perhaps
as implemented in a given software system. To apply MMU,
one defines the laws that govern a system, uses these laws to
construct ‘‘experimental’’ results, simulates the ‘‘experiments’’
using some computational model, and then tests the ability of
the given UQ method to quantify the difference between simula-
tion and ‘‘reality’’. This paper presents preliminary results from a
computationally simple yet rich ‘‘universe’’ in which two UQ
methodologies are examined: first, a Gaussian process code [2–4]
from Los Alamos National Laboratory (LANL) and second, a
Bayesian Multivariate Adaptive Regression Spline [5] (BMARS)
technique combined with a filtering/weighting method. The
conclusion drawn from these results is that MMU is a powerful
technique that can help identify problems in UQ software, help
computational scientists and engineers understand the subtleties,
strengths, and weaknesses of various UQ methodologies, and
help decision-makers to evaluate the credibility of predictive
statements.

In Section 2 we define MMU in more detail, and in Section 3
we describe the manufactured universe that serves as the exam-
ple in this paper. We also define the approximate mathematical
model of the manufactured reality. In Section 4 we describe the
two UQ methodologies that we use as examples in this paper.
Sections 5 and 6 contain results from these methodologies, and
Section 7 contains conclusions.

2. Introduction of the Method of Manufactured Universes

The motivation for this framework is the need to understand
the assumptions embedded in UQ methods and the manner in
which the effects of these assumptions propagate to the method’s
output. For example, a common practice for describing an
unknown distribution (prior distribution or output uncertainty,
for example) is to assume a Gaussian distribution with some
estimated mean and standard deviation. The underlying function,
however, may have only finite support and may be asymmetric;
this information could be lost, excluded, or misrepresented by the
assumed normal distribution. In some applications, this may be
an acceptable approximation. It can easily be imagined, however,
that a certain problem or set of physics might not be accurately
represented in this manner.

We emphasize that it is not the purpose of this paper to expose
every flaw or invalid assumption of every UQ method. Assump-
tions and limitations in statistical processes are often well known
and documented. Instead, our purpose is to propose and illustrate
a framework that others may use to determine the applicability of
a given method to their specific problems. We champion the idea
of ‘‘glass box’’ approaches to uncertainty quantification, and we
believe that the simple study presented in this paper is a strong
example of the value added in understanding the mechanics of
the predictive software.

2.1. The MMU framework

The following list presents the basic steps of the MMU
framework.

1. Define laws that govern the manufactured universe. This
means creating mathematical models that define the laws
that govern system behavior and the physical constants that
serve as inputs to the models. As discussed below, these laws
should reflect some key characteristics of modeler’s real problem
of interest.

2. Create ‘‘experiments’’ by defining physical problems and use
the manufactured laws to create exact output quantities of
interest (QOIs). Then, optionally, create ‘‘measured’’ data by
perturbing these output QOIs using an error model.

3. Define an approximate model on which the UQ methodology is
to be tested. This will include the choices of input parameters
to the simulation and estimates their uncertainties (these
estimates, themselves, could be uncertain).

4. Apply the given UQ methodology to the set of {approximate
model, uncertain input constants, measured data}.

5. Define a new set of experiments and predict new values of the
QOIs, with uncertainties, using what was learned from the UQ
methodology. Generate ‘‘real’’ experimental results using the
manufactured laws, and assess how well the UQ method
quantified the uncertainties in the predictions.

Of course, this method can be repeated with variations on the
approximate models, measurement-error models, data uncertain-
ties, UQ methodology parameters, and universal laws.

2.2. Designing the ‘‘universe’’ given a real problem of interest

To maximize the utility of an MMU study, the modeler should
try to manufacture a universe (that is, the physical laws, ‘‘experi-
ments’’, approximate model, and the relationship between them)
that properly reflects the physics, computational models, and
uncertainties of the real-world predictive science or engineering
problem. Further, the universe must also allow the modeler to
explore, isolate, and further understand the characteristics of the
UQ methodology. We identify two important factors that the
modeler should consider when manufacturing the universe:

1. The manufactured universe should contain the same types and
sources of uncertainty as the real-world problem.

Unless care is taken with this, there is a risk that the lessons
learned from using MMU may not apply to the real problem
of interest. Some characteristics of the real problem that
one might seek to mimic in the manufactured universe
include the mix of epistemic and aleatory uncertainties, the
nature of prior distributions of uncertain parameters, and
the origin and path of propagation of the most important
uncertainties.

2. The simplifications that lead from the manufactured laws to
the MMU approximate model should be closely related to and
simplifications of the real-world physics that lead to the real-
world mathematical model of interest.

As we emphasized before and will show by example, a
complete treatment of uncertainty – which includes uncer-
tainty due to model error – must be informed by the
physics of the problem. Therefore, the model error in the
MMU analysis should closely mimic the model error in
the real problem to maximize the real-world value of the
insight gained through the MMU analysis.

2.3. Example: a particle-transport universe

The examples in this paper will present results from a neutral
particle transport ‘‘universe’’. The universe is relevant to our real-
world problems in which transport calculations play key roles
in the analysis of complex systems such as nuclear reactors or
high energy-density laboratory experiments. Uncertainties in
these real problems are often driven by material properties (such
as interaction cross-sections), and we are often interested in the
model fidelity and accuracy of material properties that are
required to produce quantities of interest such as material
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