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a b s t r a c t

A new theory for the dynamic modeling of cables is presented in this paper, focusing on underwater
applications. The main idea is to approximate the continuous flexibility of the cable by several rigid links
connected by fictitious elastic joints, allowing three movements: elevation, azimuth and torsion. The
Lagrangian of the system is written in a compact form and can be generated for any number of links
chosen to represent the structural dynamics. The application of Euler–Lagrange equations allows to
obtain the dynamic model, which in this article was developed analytically for the cases of 2, 3 and
4 links. The dynamic model's equations grow significantly with the growth of the number of links and a
detailed analysis of this growth enabled the proposition of generic algorithms for the automatic gen-
eration of the vectors and matrices elements, for whatever number of considered links. This theory was
proposed considering a cable fixed at one end and free at the other, containing a terminal load. However,
it can be easily adapted to flexible structures fixed at both ends and for applications underwater or out of
water. The generic algorithms proposed in this article allow fast and automatic retrieval of dynamic
models of cables, considering a large number of links to represent the structural flexibility, that would be
unfeasible to obtain manually.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic modeling of flexible structures such as a cable is a
complicated task, mainly due to the several degrees of freedom
needed to represent a very complex dynamics, especially when
considering movements in 3D space. Many applications involving
cables dynamics occur in the underwater environment. The
knowledge of the dynamic structural model such as risers, moor-
ing lines, towing cables, etc., can be of great importance for the
offshore oil industry, for example (see Fig. 1).

Most studies found in the literature address the modeling of
these structures using Finite Element Methods (Wang et al., 1998;
Gosling and Korban, 2001). Other authors also used finite element
methods for the structural dynamic analysis of flexible cables
(Buckam et al., 2004; Srinil et al., 2007; Yoon et al., 2008). Sun
et al. (2011) introduced a finite element method to modeling a
cable towed body.

Some authors have developed their works performing a cable
static analysis (Hover et al., 1994; Matulea et al., 2008; Wang et al.,
2008), using the method of finite differences. A static analysis of
two-dimensional cables is also made in Dreyer and Van Vuuren
(1999), using numerical solution of both continuous and discrete
models. Discrete approach was used specially in static analysis:

Raman-Nair and Williams (2005) have used a discrete model to
reproduce structural forces acting into a flexible marine riser un-
der effects of flow and pressure of fluid within the riser; Zhu et al.
(2008) proposed a discrete model to determine the forces that an
umbilical cable exerts on a ROV (Remotely Operated Vehicle).

When the discrete formalism is used in dynamic modeling,
usually lumped mass approach is applied, considering the dy-
namics evolving in a single plane. A simulation of cable dynamics
for kites was made by Breukels and Ockels (2007) considering
each link with one degree of freedom mass spring damper model
and in that case, the flexible structure's motion was restricted in a
single vertical plane. Hall and Goupee (2015) used a lumped mass
approach to modeling a mooring line and validated the simula-
tions with an offshore wind turbine test data.

Finite differences are widely used in cable modeling. Lacarbo-
nara and Pacitti (2008) used finite differences to modeling cables
suffering axis stretching and flexural curvature. In Srivastava et al.
(2011) a three-dimensional model of underwater towed cable is
studied and governing equations are solved by using a central fi-
nite-difference method. Matulea et al. (2014) used finite differ-
ences, first to determine the static equilibrium configuration of the
riser, and then to find its dynamic response around the formerly
computed static configuration, considering the flexible structure
restrict to the vertical plane. Lee et al. (2015) applied finite dif-
ference method with lumped mass to modeling a flexible pipe.
Zhang and Li (2015) analyzed axial dynamic stress response of
deep water risers and a Linear Quadratic Gaussian control was

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/oceaneng

Ocean Engineering

http://dx.doi.org/10.1016/j.oceaneng.2016.05.041
0029-8018/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: sebastiaogomes@furg.br (S.C.P. Gomes).

Ocean Engineering 121 (2016) 559–571

www.sciencedirect.com/science/journal/00298018
www.elsevier.com/locate/oceaneng
http://dx.doi.org/10.1016/j.oceaneng.2016.05.041
http://dx.doi.org/10.1016/j.oceaneng.2016.05.041
http://dx.doi.org/10.1016/j.oceaneng.2016.05.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2016.05.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2016.05.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2016.05.041&domain=pdf
mailto:sebastiaogomes@furg.br
http://dx.doi.org/10.1016/j.oceaneng.2016.05.041


proposed to deal with this problem.
In short, most of the articles that deal with cables treat the

problem as restricted to a single plane using finite elements or
finite differences for the dynamic model. Other works focus in-
terest in static analysis of axial forces on the cable. Gobat (2000) in
his thesis provides details about these main methods used in cable
dynamics.

This paper introduces a new method to automatically obtain
vectors and matrices elements of a cable dynamic model. We use
the discrete formalism to represent the continuous flexibility from
a chain of rigid links connected by fictitious elastic joints. Each
joint allows three elastic movements: elevation, azimuth and
torsion. We take as a basis the work of Gomes et al. (2006),
wherein the discrete formalism was used to model a robotic ma-
nipulator with a single flexible link. In that case, the flexibility
occurred on a single plane and each joint had one degree of
freedom. Based on this work, Pereira et al. (2012) developed the
analytical modeling of a cable considering 3 links, but with spatial
flexibility, i.e. the discrete formalism was used without the motion
being restricted to a single plane. The present article complete in a
definite way that proposed by Pereira et al. (2012), since, from the
Lagrangian written in a generic way (for any number of links)
proposes generic algorithms to determine automatically the dy-
namic model, for any number of links chosen to represent the
continuous flexibility. Automatic retrieval models is very im-
portant due to the great complexity of the equations that turn
unfeasible obtaining these models manually through the applica-
tion of the Euler–Lagrange equations. Generic algorithms are the
great innovation and contribution of this article.

2. Fundamentals of the proposed theory

In this work it is considered a cylindrical cable with constant
radius, fixed at one extremity (fixed base) and free at the other,
where there is a terminal load mc. The basic principle of this
modeling theory is to approximate the continuous flexibility by a
discrete equivalent one, consisting of rigid links connected by
flexible fictitious joints, as showed in Fig. 2. Each fictitious elastic
joint allows three movements: elevation, azimuth and torsion.
Therefore, this dynamic system has 3n degrees of freedom when
considering n links. In each fictitious joint is positioned a reference
frame, as shown in Fig. 3 for the first two systems. The first is an

inertial system (X0 Y0 Z0). It was adopted the following convention
for reference systems: all Z axes point to the center of the Earth
and thus, the XY axes form horizontal planes. The Yi axes are
parallel to the projection of the link i on the Xi�1Yi�1 plane, as
showed in Figs. 3 and 4. For instance, Y1 is parallel to r in Fig. 3.
Fig. 4 also shows the three angular positions coordinates of the
first joint and the three others of the second fictitious joint.

It is very simple to find a homogeneous transformation matrix
between two consecutive reference systems. For example, the
homogeneous matrix that relates X0Y0Z0 and X1Y1Z1 systems has
the form:
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The products between successive homogeneous matrices gen-
erate another homogeneous matrix that can relate any mobile
reference system to the base inertial system of the structure. Thus,
the spatial position of the center of mass of any link in the inertial
frame may be determined as functions of the lengths of the links
and the angular position coordinates, as specified below
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Arising from the same formalism, spatial coordinates of the
terminal load (written in the inertial frame) have the form:

Fig. 1. Cables in underwater applications (font: http://diariodopresal.wordpress.
com/petroleo-e-gas). Fig. 2. Continuous flexibility and its discrete approximation.
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