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a b s t r a c t

Numerous approaches are proposed in the literature for non-stationarity marginal extreme value in-
ference, including different model parameterisations with respect to covariate, and different inference
schemes. The objective of this paper is to compare some of these procedures critically. We generate
sample realisations from generalised Pareto distributions, the parameters of which are smooth functions
of a single smooth periodic covariate, specified to reflect the characteristics of actual samples from the
tail of the distribution of significant wave height with direction, considered in the literature in the recent
past. We estimate extreme values models (a) using Constant, Fourier, B-spline and Gaussian Process
parameterisations for the functional forms of generalised Pareto shape and (adjusted) scale with respect
to covariate and (b) maximum likelihood and Bayesian inference procedures. We evaluate the relative
quality of inferences by estimating return value distributions for the response corresponding to a time
period of ×10 the (assumed) period of the original sample, and compare estimated return values dis-
tributions with the truth using Kullback–Leibler, Cramer–von Mises and Kolmogorov–Smirnov statistics.
We find that Spline and Gaussian Process parameterisations, estimated by Markov chain Monte Carlo
inference using the mMALA algorithm, perform equally well in terms of quality of inference and com-
putational efficiency, and generally perform better than alternatives in those respects.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate estimates of the likely extreme environmental loading
on an offshore facility are vital to enable a design that ensures the
facility is both structurally reliable and economic. This involves
estimating the extreme value behaviour of meteorological and
oceanographic (metocean) variables that quantify the various en-
vironmental loading quantities, primarily winds, wave, and cur-
rents. Examples of such parameters are significant wave height,
mean wind speed and mean current speed. These characterise the
environment for a given short period of time within which the
environment is assumed to be stationary.

The long-term variability of these parameters is however non-
stationary, in particular with respect to time, space and direction.
From a temporal point of view metocean parameters generally
have a strong seasonal variation, with an annual periodicity, and
longer term variations due to decadal or semi-decadal climate
variations. At any given location, the variability of a particular

parameter is also dependent on the direction; for example, wind
forcing is typically stronger from some directions than others, and
fetch and water depth effects can strongly influence the resulting
magnitude of the waves. Clearly these effects will vary with lo-
cation: a more exposed location will be associated with longer
fetches, resulting in a more extreme wave climate.

When estimating the long-term variability of parameters, such
as significant wave height, the non-stationary effects associated
with e.g. direction and season can be incorporated by treating
direction and season as covariates. The common practice is to
perform extreme value analysis of hindcast data sets, which in-
clude many years of metocean parameters, along with their as-
sociated covariates. Such data sets have all the information needed
for input to covariate analysis.

From a design perspective, the metocean engineer is often re-
quired to specify return values for directional sectors such as oc-
tants centred on the cardinal and semi-cardinal directions. These
directional return value estimates must be consistent with the
estimated omnidirectional return value. In a similar manner, re-
turn values may be required corresponding to particular seasons
or months of the year, consistent with an all-year return value.
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Clearly, therefore, efficient and reliable inference for non-sta-
tionary extremes is of considerable practical interest, requiring
estimation of (a) the rate and (b) the size of rare events. This work
addresses the latter of these objectives.

A non-stationary extreme value model is generally superior to
the alternative “partitioning” method sometimes used within the
ocean engineering community. In the partitioning method, the
sample is partitioned into subsets corresponding to approximately
constant values of covariate(s); independent extreme value ana-
lysis is then performed on each subset. For example, in the current
work we might choose to partition the sample into directional
octants, and then estimate (8 independent stationary) extreme
value models for each of the octants. There are two main reasons
for favouring a non-stationarity model over the partitioning
method. Firstly, the partitioning approach incurs a loss in statis-
tical efficiency of estimation, since parameter estimates for subsets
with similar covariate values are estimated independently of one
another, even though physical insight would require parameter
estimates to be similar. This problem worsens as the number of
covariates and covariate subsets increases, and the sample size per
subset decreases as a result. In the non-stationary model, we re-
quire that parameter estimates corresponding to similar values of
covariates be similar, and optimise the degree of similarity during
inference. For this reason, parameter uncertainty from the non-
stationary model is generally smaller than from the partitioning
approach. Secondly, the partitioning approach assumes that,
within each subset, the sub-sample for extreme value modelling is
homogeneous with respect to covariates. In general it is difficult to
estimate what effect this assumption might have on parameter
and return value estimates (especially when large intervals of
values of covariates are combined into a subset). In the non-sta-
tionary model, we avoid the need to make this assumption.

Numerous articles have reported the essential features of ex-
treme value analysis (e.g. Davison and Smith, 1990) and the im-
portance of considering different aspects of covariate effects (e.g.
Northrop et al., 2016). Carter and Challenor (1981) consider esti-
mation of annual maxima from monthly data, when the dis-
tribution functions of monthly extremes are known. Coles and
Walshaw (1994) describe directional modelling of extreme wind
speeds using a Fourier parameterisation. Scotto and Guedes-
Soares (2000) model the long-term time series of significant wave
height with non-linear threshold models. Anderson et al. (2001)
report that estimates for 100-year significant wave height from an
extreme value model ignoring seasonality are considerably smaller
than those obtained using a number of different seasonal extreme
value models. Chavez-Demoulin and Embrechts (2006) describe
smooth extreme value models in finance and insurance. Chavez-
Demoulin and Davison (2005) provide a straight-forward de-
scription of a nonhomogeneous Poisson model in which occur-
rence rates and extreme value properties are modelled as func-
tions of covariates. Cooley et al. (2006) use a Bayesian hierarchical
model to characterise extremes of lichen growth. Renard et al.
(2006) consider identification of changes in peaks over threshold
using Bayesian inference. Fawcett and Walshaw (2006) use a
hierarchical model to identify location and seasonal effects in
marginal densities of hourly maxima for wind speed. Mendez et al.
(2008) consider seasonal non-stationarity in extremes of NOAA
buoy records. Randell et al. (2015a) discuss estimation for return
values for significant wave height in the South China Sea using a
directional-seasonal extreme value model. Randell et al. (2014)
explore the directional characteristics of hindcast storm peak
significant wave height with direction for locations in the Gulf of
Mexico, North-West Shelf of Australia, Northern North Sea,
Southern North Sea, South Atlantic Ocean, Alaska, South China Sea
and West Africa. Fig. 1 illustrates the essential features of samples
such as these. The rate and magnitude of occurrences of storm

events vary considerably between locations, and with direction at
each location. There are directional sectors with effectively no
occurrences, there is evidence of rapid changes in characteristics
with direction and of local stationarity with direction. Any realistic
model for such samples needs to be non-stationary with respect to
direction.

The objective of this paper is to evaluate critically different
procedures for estimating non-stationary extreme value models.
We quantify the extent to which extreme value analysis of samples
of peaks over threshold exhibiting clear non-stationarity with re-
spect to covariates, such as those in Fig. 1 or simulation case stu-
dies in Section 3 below, is influenced by a particular choice of
model parameterisation or inference method. The 6 simulation
case studies introduced in Section 3 are constructed to reflect the
general features of the samples in Fig. 1, with the advantage that
the statistical characteristics of the case studies are known exactly,
allowing objective evaluation and comparison of competing
methods of model parameterisation and inference. Our aim is that
the results of this study are generally informative about any ap-
plication of non-stationary extreme value analysis. We generate
sample realisations from generalised Pareto distributions, the
parameters of which are smooth functions of a single smooth
periodic covariate. Then we estimate extreme value models
(a) using Constant, Fourier, B-spline and Gaussian Process para-
meterisations for the functional forms of generalised Pareto
parameters with respect to covariate and (b) maximum likelihood
and Bayesian inference procedures. We evaluate the relative
quality of inferences by estimating return value distributions for
the response corresponding to a time period of ×10 the (as-
sumed) period of the original sample, and compare estimated
return values distributions with the truth using Kullback–Leibler
(e.g. Perez-Cruz, 2008), Cramer–von Mises (e.g. Anderson, 1962)
and Kolmogorov–Smirnov statistics. We cannot hope to compare
all possible parameterisations, but choose four parameterisations
useful in our experience. Similarly, there are many competing
approaches for maximum likelihood and Bayesian inference, and
general interest in understanding their relative characteristics. For
example, Smith and Naylor (1987) compare maximum likelihood
and Bayesian inference for the three-parameter Weibull distribu-
tion. In this work, we choose to compare frequentist penalised
likelihood maximisation (see Section 2.3) with two Markov chain
Monte Carlo (MCMC) methods of different complexities. Non-
stationary model estimation is a growing field. There is a huge
literature on still further possibilities for parametric (e.g. Cheby-
shev, Legendre and other polynomial forms) and non-parametric
(e.g. Gauss–Markov random fields and radial basis functions)
model parameterisations with respect to covariates. Moreover, in
extreme value analysis, pre-processing of a response to near sta-
tionarity (e.g. using a Box–Cox transformation) is preferred.

The outline of the paper is as follows. Section 2 outlines the
different model parameterisations and inference schemes under
consideration. Section 3 describes underlying model forms used to
generate samples for inference, outlines the procedure for esti-
mation of return value distributions and their comparison, and
presents results of those comparisons. Section 4 provides discus-
sion and conclusions.

2. Estimating non-stationary extremes

Consider a random variable Y representing an environmental
variable of interest such as significant wave height. The char-
acteristics of Y are dependent on covariates such as (wave) direc-
tion, season, location and fetch. In this work we assume that a
single periodic covariate θ (typically direction, or season) is suffi-
cient to characterise the non-stationarity of Y. That is, we assume
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