
Three dimensional sloshing of stratified liquid in a cylindrical tank

Zhen Wang a,n, Li Zou b, Zhi Zong b

a School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
b School of Naval Architecture, Dalian University of Technology, Dalian 116085, China

a r t i c l e i n f o

Article history:
Received 23 January 2016
Received in revised form
15 March 2016
Accepted 24 April 2016
Available online 3 May 2016

Keywords:
Continuous stratified liquid
Resonance
Sloshing
Cylindrical tank

a b s t r a c t

The sloshing of stratified liquid with density varying with depth in a three dimensional cylindrical tank is
considered in the framework of linearized theory. The flow of stratified liquid is no longer irrotional and
the governing equation is no longer Laplacian. The stream function is also invalid for three dimensional
sloshing, which is different from two dimensional sloshing. We adopt the governing equations and
boundary conditions in terms of a pressure function and a density function to instead of velocity po-
tential for uniform liquid. Separation of variables and Laplace transformation methods are used to solve
the governing equations for the constant Brunt–Väisälä frequency. The Residue theorem is applied to
calculate the inverse Laplace transformation and the resonant behavior is also analyzed. It is found that
the natural frequencies are weakened by the stratification of the liquid density. New natural frequencies
have appeared which do not exist for uniform liquid. We find that these new frequencies have some
special characters; they make the motion history of free surface irregular, the amplitudes caused by new
frequencies are remarkable, nearly two-thirds of the amplitude caused by natural frequencies and all
new frequencies are less than Brunt–Väisälä frequency N.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Sloshing is a classic and important problem of fluid dynamics. It
also has a wide range of applications in engineering, such as
moving vehicle and structure containing a liquid with a free sur-
face, ships, offshore platform, harbor resonance. Resonant motion
of the moving liquid can become extremely large if no or weak
hydrodynamics damping is present. Sloshing is important for the
safety of the structures (Faltinsen and Timokha, 2009; Lighthill,
2001; Yih, 1965; Batchelor, 1967). There are many publications
devoted in sloshing phenomenon, but most of them focus on the
case of uniform density and two layer liquid (Faltinsen et al., 2011;
Tang, 1993b; Veletsos and Shivakumar, 1995; Gavrilyuk et al.,
2005; Ardakanin et al., 2015; Sinai, 1985; Hiroyuki and Seiichi,
1985).

Sloshing of liquid with variable density is also an important
issue and applicable in engineering, such as waste storage tanks
and crude oil storage tanks. Bandyopadhyay (1991) indicated that
a large number of high level waste (HLW) storage tanks at various
U.S. Department of Energy (DOE) facilities contain liquid with
nonuniform density. After prolonged storage, the waste material
and the crude oil gradually deposit on the bottom of the tank. It
may even form continuous variation of sludge at the tank base. So

the difference of the density can be large from top to bottom of the
tank. When gas is mixed into the liquid, the liquid can also be
regarded as stratified liquid. In fact, there are also waves in the
inner of the stratified liquid, which are called internal waves
(Valentine, 2005).

Sloshing of continuously stratified liquid has its own characters
and phenomenons. The predictions obtained through uniform
density assumption may no longer hold. Thus, there is a need to
understand the effect of nonuniform density on the dynamics
response of the contained liquid. There are relatively less results
for continuous stratified fluids. Most works assumed to be com-
posed of several layers with piecewise uniform densities (Faltinsen
and Timokha, 2009; Tang, 1993a,b). This simplification introduces
a pressure jump condition or shear stress at the interface of ad-
jacent layers (Faltinsen and Timokha, 2009). Exploratory studies
on the dynamic response of tanks containing two liquids have
been performed by Tang (1993a,b). Those studies show that the
dynamic response of a tank containing two liquids is quite dif-
ferent from that of an identical tank containing only one liquid.
The sloshing wave height may increase significantly in a tank that
contains two liquids. Therefore, it is necessary to understand the
sloshing response of tanks that contain liquid with nonuniform
density in order to design and evaluate the HLW storage tanks.

Many different numerical methods are developed for sloshing,
such as Chapman and Porter (2005), Robertson et al. (2004),
Frandsen (2004), Kisheve et al. (2006), and Wu et al. (1998). The
nonlinear resonance are also studied by numerical methods in Wu
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(2007) and Zhang (2014). The natural sloshing modes are very
important for studying the sloshing phenomenon. There are also
some works on sloshing modes and frequencies, such as Faltinsen
and Timokha (2012a,b, 2014), McIver (1989), and Scolan (2015). An
analytical solution for a liquid-filled tank with continuously
varying density is a difficult task. Liquid with variational density
continuously is no longer governed by irrotional and Laplacian
type governing equation. For two dimensional rectangular tank,
Wu (2011) adopted stream function to analyze the sloshing, but
stream function method does not work for the three dimensional
sloshing. In this paper, we focus on the motion of the in-
compressible liquid with vertical stratified density in a three di-
mensional cylindrical tank. We will deduce a differential equation
in terms of pressure to represent the motion of stratified liquid
with the help of the linearized momentum equations and the
continuity equation. The governing equation in terms of pressure
is different from that expressed by velocity potential when the
density is constant. The boundary conditions are also expressed for
the pressure, and then the Laplace transformation and separation
of variables are applied to solve the problem.

The behavior of the motion of the stratified liquid is also dif-
ferent from that of uniform liquid. Motion of the stratified liquid
leads to a more complicated equation for natural frequencies, and
the dispersion relation is also more complicated. However it can
be reduced to the result of constant density liquid.

2. Governing equations and boundary conditions

The motion of stratified liquid in a circular cylindrical tank with
depth d and radius R0 is considered. Cylindrical coordinate system

θ( )r z, , is adopted, the origin is located at the center of the static
free surface and z-axis points upward which is the same in both
coordinate systems.

The liquid is assumed to be inviscid. We also assume that the
density depends on the depth of the fluid, in other words, the
density ρ ( )z0 is a function of z. When the fluid is set into motion,
we divide the density into static part ρ ( )z0 and dynamic part
ρ′( )x y z t, , , , i.e. ρ ρ ρ( ) = ′( ) + ( )x y z t x y z t z, , , , , , 0 . In what follows,
we will denote ρ ( )z0 , ρ ( )x y z t, , , and ρ′( )x y z t, , , by ρ0, ρ and ρ′,
respectively. For still water, the velocities are set = ( ) =u v wv , , 0.
The magnitude of static density ρ0 is assumed as ( )O 1 . The mag-
nitudes of dynamics density ρ′, velocities = ( )u v wv , , and pres-
sure function = ( )p p x y z t, , , for small motion are assumed as (ϵ)O .
Momentum equation can be expressed by

ρ
= − +d

dt
p

v
F

1
grad ,

where = ( − )gF 0, 0, T , g is the gravitational acceleration. Linear-
ized momentum equation for small motion can be written as

ρ ρ ρ
= − = − = − −

( )
u p v p w p g

1
,

1
,

1
.

1
t x t y t z

Since ρ ρ ρ= + ′0 , then the linearized momentum equation can
be rewritten as

ρ ρ ρ ρ ρ= − = − = − − ( ′ + ) ( )u p v p w p g, , . 2t x t y t z0 0 0 0

Here if ρ is constant, then the liquid is irrotional and velocity
potential function could be used to analyze sloshing of constant
density liquid. But now ρ0 is a function of z, then the rotation of
velocity ∇ × v is not always equal to zero. A different procedure is
necessary.

Since sloshing of the liquid is considered in this paper, we can
assume the liquid is incompressible as mentioned above, it means
that

ρ ρ ρ ρ ρ= + + + = ( )
d
dt

u v w 0, 3t x y z

which can be found in many contexts, such as Batchelor (1967). In
the sense of linear approximation, it has a simple form by ne-
glecting nonlinear terms

ρ ρ′ + = ( )w 0. 4t z0

Velocity component w can be replaced by pressure p with the aid
of linearized momentum equation in z component in Eq. (2), then
the incompressible condition can be expressed by pressure and
density as follows:

ρ
ρ
ρ

ρ
ρ

ρ ρ′ − − ( ′ + ) =
( )

p g 0.
5tt

z
z

z0

0

0

0
0

We note that Eq. (5) has the same form under the cylindrical
coordinate.

Since the liquid is incompressible as shown in Eq. (3), the
continuity equation

ρ ρ+ ( + + ) =d
dt

u v w 0x y z

takes the form as

+ + = ( )u v w 0. 6x y z

Multiplying Eq. (6) with ρ0 and differentiating Eq. (6) with respect
to t, we get an equation in terms of pressure p and dynamic
density ρ′ by the aid of Eq. (2)

ρ
ρ
ρ

ρ∇ + ′ − ( + ′ ) =
( )

p g p g 0,
7z

z
z

2 0

0

which also can be rewritten as

ρ
ρ
ρ

ρ+ ( ) + + ′ − ( + ′ ) =
( )θθp

r
rp

r
p g p g

1 1
0.

8zz r r z
z
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0

in cylindrical coordinates θ( )r z, , .
Eqs. (8) and (5) are the governing equations in the whole zone

of the liquid under cylindrical coordinate. These equations are in
terms of pressure function and density function that deduced from
the momentum equation (Eq. (2)), continuity equation (Eq. (6))
and incompressible condition (Eq. (3)).

The dynamics boundary condition on the free surface
η= ( )z x y t, , can be written as

η( = ) = ( )p x y z t, , , 0. 9

We will deduce a condition for pressure at mean level z¼0. In
order to match the governing equations which are in terms of
pressure and density for varying density flow, linear approxima-
tion of the pressure at the mean surface level z¼0 gives

η( ) + ∂ ( )
∂

= ( )p x y t
p x y t

z
, , 0,

, , 0,
0, 10

where ∂ ( )
∂

p x y t
z

, , 0, can be given by ρ− ( )g00 with the aid of the third
momentum equation of Eq. (2), which also called hydrostatic
condition (Yih, 1965). So Eq. (10) can be written as

( ) ( )ρ η− = ( )p x y t g, , 0, 0 0. 110

This relation also gives a direct link between pressure and free
surface. The expression of free surface will be given by the solution
of pressure in next section.

Differentiating Eq. (11) with respect to t twice, and considering
the relation η = wt and linear momentum equation on the free
surface z¼0, we get

ρ ρ+ + ( ′ + ( )) = = ( )p gp g z0 0 on 0. 12tt z
2

0
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