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a b s t r a c t

2D modeling for surf zone phenomenons are validated in present work using the rotational Boussinesq–
Green–Naghdi model. Three benchmark test cases are simulated: tsunami wave runup a conical island;
tsunami wave runup complex shelf; and rip current and wave setup over sand bars. The computed
results are compared to the experimental data including the free surface deformation and depth-
averaged velocities. The simulated 2D cases fundamentally validate the model's ability in predicting wave
transformation, wave breaking, wave runup and the velocity field for complex hydrodynamic conditions
and give the basis for moving on to more complex applications. The lack of irrotationality would strongly
contribute to the depth-varying velocity profile of rotational modeling, which has been partially proven
in 1D undertow test (Zhang et al., 2014a). Unfortunately, few 2D experiments with rotational vortex data
measured could be found due to the difficulty of recording the vortex characteristics. Future work would
be the model application to much more complex geophysical and engineering problems, where the lack
of any irrotational constrain is expected to excel.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Boussinesq-type models describe nonlinear and dispersive
wave propagation in arbitrary directions with good computational
efficiency and range of validity. Since the classic depth-averaged
Boussinesq theory was introduced by Peregrine et al. (1967),
Boussinesq-type models have experienced a booming develop-
ment in accuracy, range of application and popularity (Nwogu,
1993; Wei et al., 1995; Kennedy et al., 2001; Madsen and Schäffer,
1998; Gobbi and Kirby, 1999; Gobbi et al., 2000; Kennedy and
Kirby, 2002; Lynett and Liu, 2002a; Madsen et al., 2002; Donahue
et al., 2015). Properties such as dispersion, shoaling gradient, and
higher order harmonics have been significantly improved by
asymptotic rearrangement throughout the system. Introducing an
eddy viscosity model and moving shorelines enables viscid Bous-
sinesq models to describe surf zone dynamics such as wave evo-
lution, wave setup, and large scale wave-induced currents
including rip currents and longshore currents (Schäffer and Mad-
sen, 1993; Sørensen et al., 1998; Chen et al., 2000; Kennedy et al.,

2000a, 2000b; Lynett et al., 2002b; Musumeci et al., 2005; Nwogu
and Demirbilek, 2010; Shi et al., 2012; Bonneton et al., 2011; Kim
and Lynett, 2013).

Green and Naghdi (1976) introduced an alternate but related
approach dealing with the rotational orbital velocities using a
polynomial structure of the velocity profile. The mass and
momentum equations were solved using a weighted residual with
no irrotationality constraint, so that the rotational flow is expected
to be modeled naturally. Zhang et al. (2012, 2013) developed
Boussinesq–Green–Naghdi models that take advantage of both
Boussinesq and Green–Naghdi systems. Polynomial expansions
(Shields and Webster, 1988) and Boussinesq scaling were both
applied. The major interest, rotational modeling, has been partially
validated at both Oðμ2Þ and Oðμ4Þ approximation levels for 1D test
cases which include nonbreaking and breaking waves in surf zone,
undertow and wave runup (Zhang et al., 2014b; Panda et al., 2014).
All these give the basis and confidence for further 2D surf zone
modeling.

For breaking techniques, two common ones are usually adop-
ted. The first technique is the surface roller method based on the
flux version of Boussinesq equations (Schäffer and Madsen, 1993)
which was further developed by Madsen et al. (1997). The second
approach is the ad hoc eddy viscosity formulation originally
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developed by Zelt (1991), and extended by Kennedy et al. (2000a)
that yields extra viscous terms in momentum equations leading to
wave dissipation. Both eddy viscosity and surface roller techniques
are of comparable accuracy. A third, more recent, approach turns
off dispersive terms in the vicinity of the breaking roller and
allows the dissipative nature of shallow water bores to remove
energy from waves while conserving momentum (Shi et al., 2012;
Tissier et al., 2012).

In this paper, the rotational Boussinesq–Green–Naghdi mod-
eling is extended to 2D/quasi-3D demonstrations for complex
hydrodynamics, including wave transformations and interactions,
wave breaking, and moving multi-wet–dry shoreline interfaces. In
order to reproduce the energy dissipation under the breaking
wave crest, viscous terms in the Navier Stokes equation repre-
sented by eddy viscosity are kept by Boussinesq scaling which may
be further improved by introducing extra scaling. The eddy visc-
osity is modeled by the depth-integrated k� l turbulent-kinetic-
energy equation. The k� l model (Karambas and Koutitas, 1992) is
a basic approach for turbulence modeling compared to more
complex turbulence models such as k�ϵ model, k�ω model, and
Reynolds-stress related models. The model is arguably the sim-
plest incomplete turbulence model, and hence it has the broad
range of applicability with much less computational cost. This
simplicity is helpful to make the system tractable. And similar to
k�ϵ model (King et al., 2012), k�ω (Neary, 2003) model, k� l is a
favorable numerical coupling between the flow and turbulence
equations. Benchmarked experimental cases with wave breaking,
wave runup and rotational velocity fields are simulated. Numerical
results reach highly satisfactory level compared to collected
experimental data.

Due to the single surface assumption in Boussinesq models,
there is an upper limit on accuracy for the model used here to
simulate the complex free surfaces under wave breaking, in the
roller region and near the wave crest. Still, the present model
maintains a balance between accuracy and computational effi-
ciency, which is ideal for intermediate-scale modeling with
much lower computational cost than full Navier–Stokes solvers
(e.g. Ma et al., 2012; Higuera et al., 2013).

2. Boussinesq–Green–Naghdi rotational water wave system

2.1. Scaling

The system derived is dimensionless, applying Boussinesq-
shallow water scaling for non-dimensional variables, which are
defined aswhere the superscript n indicates dimensional vari-
ables. xn � ðxn; ynÞ are horizontal spatial coordinates and the
vertical coordinate ðznÞ is oriented positive upward. gn is
gravitational acceleration. Time tn is scaled by long wave cel-
erity ðg0h0Þ1=2 and wavenumber k0, while depth hn and surface
elevation ηn scales with typical water depth h0. Horizontal and
vertical velocities ðun; vn;wnÞ are all scaled by wave orbital

velocities. The pressure Pn is hydrostatically scaled. This scaling
allows strongly nonlinear waves, although of course the system
also remains valid for small amplitude waves. Eddy viscosity νn

t
is assumed to scale with depth and gravity, and turbulent
stresses use both eddy viscosity scaling and Boussinesq-
shallow water scaling.

2.2. Model equations

As derived by Zhang et al. (2013), the fully Oðμ2Þ Boussinesq–
Green–Naghdi rotational water wave model assumes a polynomial
expansion for the horizontal and vertical velocity,

u¼ u0þμ2u1f 1þμ2u2f 2þOðμ4Þ
w¼ �∇ � u0ðηþhÞq�u0 � ∇hþOðμ2Þ ð2:2Þ
where μ is a dimensionless indicator of approximation level;
u¼ ðu; vÞ; q¼ ðzþhÞ=ðhþηÞ. The polynomial basis functions fn(q)
used here are,

f 0 ¼ 1
f 1 ¼ �54=125þq

f 2 ¼ �1=5þq2; ð2:3Þ
which is the optimized set at the approximation level of Oðμ2Þ. All
horizontal velocity components u0;u1;u2 are independent, so
that higher order velocity components do not depend on lower
order components as in other irrotational Boussinesq theories
(e.g. Peregrine et al., 1967).

Insertion of the velocity expressions (2.2) into the vertically
integrated mass and momentum equations gives, at Oðμ2Þ,

η;tþ∇ � u0ðηþhÞþμ2
X2
n ¼ 1

unðηþhÞgn j q ¼ 1

 !
¼ 0 ð2:4Þ

u0;tðηþhÞgm j q ¼ 1þu0 �∇u0ðηþhÞgm j q ¼ 1þg∇ηðηþhÞgm j q ¼ 1

þμ2
X2
n ¼ 1

un;tðηþhÞϕmn�unη;tεmn
� �j q ¼ 1

�μ2 1
2
∇ð∇ � u0;tÞðηþhÞ3ðgm�νmÞþð∇ � u0;tÞðηþhÞ2∇ðηþhÞgm

�

þ∇ðu0;t � ∇hÞðηþhÞ2ðgm�SmÞþu0;t � ∇h∇ηðηþhÞgm
�ð∇ � u0;tÞðηþhÞ2∇hSm

i
j q ¼ 1

þμ2
X2
n ¼ 1

ðun � ∇u0þu0 �∇unÞðηþhÞϕmn

�

�un∇ � ðu0ðηþhÞÞεmn
�j q ¼ 1þμ2ðηþhÞ2½ð∇ � u0Þ2

�u0 �∇ð∇ � u0Þ�ð∇ηgmþ∇hðgm�SmÞÞj q ¼ 1þ
μ2

2
ðηþhÞ3∇½ð∇ � u0Þ2

�u0 �∇ð∇ � u0Þ�ðgm�νmÞj q ¼ 1

�μ2ðηþhÞ∇ηu0 �∇ðu0 � ∇hÞgm j q ¼ 1

�μ2ðηþhÞ2∇ðu0 �∇ðu0 � ∇hÞÞðgm�SmÞj q ¼ 1 ¼
Z η

�h
f m

∂τxz
∂z

dz

þ
Z η

�h
μ2f m∇ � τxx dz; m¼ 0;1;2 ð2:5Þ

where gm and Sm are integral functions of fn, e.g. gn �
R q
0 f nðqÞdq,

with many other functions defined (Appendix A).

ðx; yÞ ¼ k0ðxn; ynÞ; z¼ h�1
0 zn; t ¼ k0ðg0h0Þ1=2tn; h¼ h�1

0 hn;

η¼ ðh0Þ�1ηn; P ¼ ðρng0h0Þ�1Pn; g¼ g�1
0 gn; ðu; vÞ ¼ ðg0h0Þ�1=2ðun; vnÞ;

w¼ ðk0h0Þ�1ðg0h0Þ�1=2wn; νt ¼ h�1
0 ðg0h0Þ�1=2ðk0h0Þ�1νn

t ; τxx ¼ g�1
0 k�1

0 h�2
0 τnxx ; τzx ¼ g�1

0 k�2
0 h�3

0 τnzx ð2:1Þ
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