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a b s t r a c t

In this study, we derived a Discrete Euler–Lagrange (DEL) equation to represent the motion of a multi-
body system, in which many bodies are connected physically by joints or wire ropes. By discretizing and
re-formulating the traditional Euler–Lagrange equation, we obtained a discrete time integrator, called the
Stömer–Verlet method. Similarly, we discretized the equations of constraints of joints and wire ropes by
the midpoint rule. Then, we adapted regularization and stabilization methods, to overcome numerical
instability and the stiffness problem.

The DEL equation can be formulated automatically, by defining the equations of joint constraints and
their derivatives. In addition, the stretching of the wire rope is mathematically modeled as constraints for
stability. To apply the DEL equation to a floating vessel, hydrostatic and hydrodynamic forces are con-
sidered as external forces.

We applied the DEL equation to a mass–spring system with the large spring coefficient. And we
tested a spring pendulum modeled by a constraint-based wire rope. Despite the large spring coefficient,
the DEL equation with the constraint-based wire rope shows relatively stable motion. We tested the
automatic formulation by three-dimensional multiple pendulums. Finally, we simulated a floating crane
and a heavy load connected by constraint-based wire rope, based on set of regular waves with different
wave heights, directions and periods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Research background

As new lifting methods are tried in the shipbuilding area, it
becomes more difficult to predict the risks of the lifting operation.
Moreover, as the weight and size of blocks and modules of off-
shore projects increase, it is not easy for production planning
engineers to prove that the lifting plan is perfectly safe, and that
there is no reason for disqualification. In this situation, dynamic
analysis is required to manage the potential risk in advance. Fig. 1
shows typical examples of block lifting by floating cranes in
shipbuilding production.

This study mainly focused on the dynamic analysis of block
lifting using floating cranes. Although dynamic analysis is basically
based on Newton's 2nd law of motion, it is not easy to apply this
law directly to the targeted bodies, because each body is

connected to one or more other bodies by wire ropes and joints.
These are termed constraints, and generate constraint forces on
each other. Therefore, an appropriate formulation should be cho-
sen to solve the equations of motion including constraint forces.
Moreover, floating cranes, for which motions are induced by sea-
water, and multiple wire ropes should be simulated in a reason-
able manner, as Fig. 1 shows. There are several requirements to
consider when choosing the formulation.

(1) Stability: During simulation, we adopt a numerical integration
method, because of the nonlinearity of the equation. Stability
means that the result should not shrink or diverge during time
integration. This is the most important factor for choosing the
formulation.

(2) Performance: The simulation should run in real time at a fixed
time step. This means that a relatively fast integration method
should be chosen, with low computational cost.

(3) Automation: The equations of motion should be automatically
formulated, having regard to the constraints and external forces.

(4) Wire rope: Wire ropes used to lift blocks generally have a very
large spring coefficient. This causes a stiffness problem, which
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makes the integration unstable. For stable simulation, wire
ropes should be carefully modeled.

(5) Floating vessel: The motion of a floating vessel is influenced by
two forces. One is the hydrostatic force, which is the same as
the displaced water weight; and the other is the hydro-
dynamic force, which is exerted by waves.

1.2. Related studies

1.2.1. Studies on floating crane simulation
Ellermann et al. (2002) considered the motions of a floating

crane and cargo in a two-dimensional plane, which means that the
floating crane has only three degrees of freedom. They considered
the cargo as a pendulum. However, in reality, the total degrees of
freedom of the floating crane and the cargo are up to 12. Fur-
thermore, the tension of the wire rope could not be calculated in
their study, because the wire rope was modeled as a pendulum.

Cha (2008) and Cha et al. (2010a) adopted multibody dynamics
to formulate the motion of the floating crane and the heavy cargo
with full degrees of freedom. To calculate the tension of wire ropes
between the floating crane and the cargo, the wire ropes were
modeled as incompressible springs. However, they manually
derived the equations of motion. Therefore if the models or con-
straints change, the equations should be derived again. This takes
much effort to obtain the final form of the equations, because the
position vectors are differentiated twice.

Cha et al. (2010b) used a topological modeling approach to
automatically formulate the equations of motion, by considering
the connectivity between two bodies. This idea is to find the
velocity transformation matrix from the multiplication of separate
sub-matrices, such as the transformation matrix, connectivity
matrix and joint characteristic matrix. However, this formulation
does not guarantee the stability of the solution induced by a large
spring coefficient. To avoid this problem, they use relatively small
spring coefficients, compared to the coefficient of real wire rope.

1.2.2. Studies on dynamic analysis formulation
A system in which joints or wire ropes physically connect many

bodies is called a multibody system. Many formulations have been
suggested to describe the motion of multibody systems.

Shabana (1994) explained two kinds of formulation. One is the
augmented formulation, which maintains the body coordinates,
and introduces Lagrange multipliers to contain the constraint
forces. The other is the embedding technique, which allows
elimination of the dependent coordinates and constraint forces.

Meanwhile, there is one more formulation, named the Euler–
Lagrange equation, which is derived from analytic methods. By
using the Euler–Lagrange equation, the constraint forces can be
neglected in the equation. The Euler–Lagrange equation looks
simple compared to the augmented formulation and the embed-
ding technique, because it uses velocity, rather than acceleration.
However, it contains derivatives, which make it difficult to auto-
matically obtain the equations of motion. Haug (1992) even
observed that the Euler–Lagrange equation was not practical.

To overcome this limitation of the Euler–Lagrange equation,
many studies, including Wendlandt and Marsden (1997), Marsden
and West (2001), and Lew (2003), adopted the finite differential
method, which changed the ordinary differential equation to the
algebraic equation by discretization. From the discretization pro-
cess, the discrete Euler–Lagrange (DEL) equation was obtained.

However, if there are constraints, such as joints and wire ropes,
the equations of motion usually become an index-3 system, which
needs an index reduction process. Unfortunately, the numerical
solution of the index-reduced system was not satisfied with the
original constraints. Bendtsen and Thomsen (1999) reported that
during numerical integration, index reduction induced a drift-off,
and an initial value problem. Therefore, Baumgarte (1972) and Eich
and Hanke (1995) suggested regularization methods that add
penalty terms to the original constraint equations.

Even though the regularization term is inserted in the equation,
the numerical integration still can be unstable. Therefore, Yoshi-
mura and Yoshida (2010) introduced a stabilization method that

Fig. 1. Typical examples of block lifting by using floating cranes in shipbuilding production.
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