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a b s t r a c t

The performance of a polyester mooring line is non-linear and its elongation plays a significant role in
the dynamic response of an offshore moored structure. However, unlike chain, the tension–elongation
relationship and the overall behavior of elastic polyester ropes are complex. In this paper, by applying an
enhanced stiffness model of the mooring line, the traditional elastic rod theory has been extended to
allow for large elongations. One beneficial feature of the present method is that the tangent stiffness
matrix is symmetric; in non-linear formulations the tangent stiffness matrix is often non-symmetric. The
static problem was solved by Newton–Raphson iteration, whereas a direct integration method was used
for the dynamic problem. The computed mooring line tension was validated against the proprietary
OrcaFlex software. Results of mooring line top tension predicated by different elongations are compared
and discussed. The present method was then used for a simulation of an offshore floating wind turbine
moored with taut lines. From a comparison between linear and non-linear formulations, it is seen that a
linear spring model under-estimates the mean position when the turbine is operating, but over-estimates
the amplitude of the platform response at low frequencies when the turbine has shut down.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The capture of offshore wind energy plays a key role across the
maritime industry (EWEA, 2013). Offshore wind turbines are
becoming larger and more powerful, and are being deployed in
ever-deeper water. They can be mounted on a fixed or floating
base, but the former starts to lose its economic advantage for
water depths larger than 60 m (Goupee et al., 2014). Although the
mooring system design for a floating offshore wind turbine
(FOWT) has benefited from the experience of offshore oil and gas
platforms, there are still several unknowns dependent on the type
of floating bodies, e.g. size and environmental loading. From a
report of EWEA (2013), it is recommended that more research
must be done on mooring and anchoring systems for wind
turbines.

Numerical simulations of the dynamic response of mooring
lines have been studied during the past few decades, for both
elastic and inelastic lines. A massless spring (e.g. Kim et al., 2001)
or the catenary equation (e.g. Agarwal and Jain, 2003) provide
straightforward ways to model a mooring line, but it is difficult to
account for the dynamic response and the interaction between the
floating body and mooring line in an accurate manner. Multi-body

system dynamics (e.g. Kreuzer and Wilke, 2003) divides the
mooring line into several rigid bodies, but results in a large
number of degrees of freedom even for a single line. Non-linear
finite element methods (FEMs), accounting for geometric and
material non-linearities, have been widely used for modelling
mooring line response (e.g. Kim et al., 2013). Geometric non-
linearity is needed for large displacements of the mooring line,
while material non-linearity can model the time-dependent
properties of a polyester rope, e.g. Young's modulus. However, a
major disadvantage of FEM is the transformation between local
coordinate and global coordinate, which is often computationally
intensive. The lumped mass and spring method can be categorized
as a non-linear FEM method, for which the shape function
becomes a single line (Low, 2006).

Unlike traditional non-linear FEMs, the elastic rod theory is a
global-coordinate-based method, which is considered to be more
efficient (Kim et.al, 1994). The transformation between local and
global coordinate is dealt within the element stiffness matrix.
Following the elastic rod theory of Love (1944), Nordgren (1974)
and Garrett (1982) developed this method and solved the gov-
erning non-linear equations by a finite difference method (FDM)
and by FEM, respectively. Many researchers have further devel-
oped the elastic rod theory, including elongation of the line, sea-
bed friction, non-linear material properties and the incorporation
of buoys or clump weights in the mooring line model. Paulling and
Webster (1986) considered the analysis of large amplitude
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motions of a TLP under the action of wind, wave and current,
under the assumption of small line elongation. Ran (2000) pro-
posed a finite element formulation for mooring lines and risers
based on Garrett's rod theory, applicable to both frequency and
time domains. Based on the traditional small extensible rod the-
ory, the incorporation of large elongation has been presented by
many researchers (e.g. Chen, 2002; Tahar, 2001; Kim et al., 2011).

Based on the successful experience from offshore oil & gas
platforms, the design and modelling of a FOWT has tended to use
the same mathematical modelling and methods of solution as for
offshore platforms, e.g. the hydrodynamic analysis of floating
body, mooring design and the types of FOWTs (Spar, TLP and
Semisubmersible, etc). The design of a station-keeping system for
a FOWT uses the same methods and guidance as for a floating
platform (e.g. ABS, 2014a). However, the geometry and operational
water depth are different. Also, the turbine thrust force may have
an effect on the motion response of the floating body and mooring
line tension, and vice versa. These differences need to be examined
for a FOWT.

Polyester lines are made from visco-elastic materials and the
stiffness characteristics rely on the loading history, the load
duration and magnitude, etc (ABS, 2014b). The material non-
linearity of polyester lines is difficult to model and requires a
longer simulation time. Thus some approximate models are used.
For example, the dual stiffness method (Tahar et al., 2012)
recommended by API RP 2SM (2001), and the visco-elastic model
(Kim et al., 2011). In the present paper, a sensible balance has been
sought between efficiency and accuracy. The traditional rod theory
has been extended to allow for large stretch by applying an
enhanced stiffness method. By using an approximation of the non-
linear tension-elongation relationship in a Taylor series expansion
(Ćatipović et al., 2011), the mathematical and numerical for-
mulation of large extensible mooring line are considered.

2. Mathematical formulation of a mooring line with large
elongation

2.1. Equation of motion

For polyester mooring lines bending and torsion stiffness can
be neglected, but the elongation cannot be assumed to be small.
The mooring line is discretized into a number of rods and the
centreline of each rod is described by a space-time curve r ðs; tÞ.
From Ćatipović et al. (2011), the equation of motion for a rod with
large elongation can be written as:

d
ds

TE

1þε
dr
ds

� �
þ 1þεÞqE ¼ ð1þεÞρ€r� ð1Þ

where ~m and ~A are distributed mass and cross-section area after
extension.ρ and g are sea water density and gravitational accel-
eration, respectively.€r represents the time derivation of the rod.
TE is the effective tension of the rod. The relation between the real
tension TR and the effective tension are (Ćatipović et al., 2011):
TE ¼ TRþpA, where p and A are hydrostatic pressure and cross-
section area, respectively. qE is the load acting on the rod. For static
problem,qE ¼ ~mg�ρ ~Ag, while for dynamic problem
qE ¼ ~mg�ρ ~AgþFH .

in which FH is the hydrodynamic loads on the mooring line
(Paulling and Webster, 1986) calculated by Morison's equation
(1950) as

FH ¼ �CAρA€rnþCMρA _Vnþ
1
2
CDρD Vn� _rn

�� ��ðVn� _rn Þ ð2Þ

where n denotes the normal component. CA,CM and CD are the
added mass, inertial (Morison) and drag coefficients.

Mooring line normal component of acceleration €rn, normal
component of velocity _rn, normal component of water particle
velocity Vn and water practical acceleration _Vn are given by
(Ćatipović et al., 2011)

_rn ¼ _r� _rU
dr
ds

� �
dr
ds
; €rn ¼ €r� €rU

dr
ds

� �
dr
ds

ð3Þ

_Vn ¼ _V� _VU
dr
ds

� �
dr
ds
; €Vn ¼ €V� €VU

dr
ds

� �
dr
ds

ð4Þ

In Eq. (1), ε is the elongation of the rod. Following Ćatipović et
al., assuming equal principal stiffness, the relationship between
the effective tension and elongation can be written as

ε¼ TE

AE
ð5Þ

where AE is the axial stiffness
The following elongation condition then has to be satisfied

(Ćatipović et al., 2011)

1
ð1þεÞ2

dr
ds

U
dr
ds

¼ 1 ð6Þ

In the static problem, the mass per unit length and diameter of
the mooring line are related to the elongation ε. The cross-
sectional area and mass after elongation can be written as
A=ð1þεÞ and m=ð1þεÞ, respectively (Ćatipović et al., 2011), where
A and m are the cross-section area and mass of the mooring line
without stretch. Applying the above relationship to the motion
equation, we see that the term ð1þεÞ, multiplied by the applied
force qE cancels out. For the hydrodynamic force calculated by
Morison's equation, the mass per unit length and cross-sectional
area for one element were assumed constant.

Eqs. (1) and (6) show the rod motion equation and elongation
condition, respectively: they are non-linear. In the following sec-
tion, we will describe a numerical procedure for solving this non-
linear equation and the required order of approximation for the
elongation condition.

2.2. Numerical Implementation

2.2.1. Static problem
For the static problem, r is independent of time. Consequently

the inertial term in Eq. (1) is deleted. We therefore have

d
ds

TE

1þε
dr
ds

� �
þqE ¼ 0 ð7Þ

Using the Taylor series expansion, the elongation relationship
can be written as:

1
ð1þεÞ2

¼ 1�2εþ3ε2þoðε3Þ ð8Þ

However, it is not clear, a priori, whether the third-order term
should be included explicitly. In the present paper, the order of
expansion and subsequent results will be discussed.

In the FEM, the variables ri and TE may be approximated
(Garrett, 1982) as

ri ðsÞ ¼
X4
k ¼ 1

Ak ðsÞUik ð9Þ

TE ðsÞ ¼
X3
m ¼ 1

Pm ðsÞλm ð10Þ

where Ak and Pm are shape functions. The definition of the shape
functions can be found in the Appendix A. Uik and λm are unknown
variables. The subscript i of Uik denotes the dimension of the
element. For the 3-dimensional problem, i¼3. For k¼1 and 3, Uik
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