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a b s t r a c t

Based on slender body theory (SBT), Tait's state equation and Riabouchinsky closure scheme, this paper
has established a theoretical model and computational method including the effect of compressibility for
supercavitating flow past a high speed slender conical body, derived the integer-differential equations
(IDE) according to different characteristics of subsonic and supersonic flows, and presented the
numerical discrete scheme and iteration method to solve the IDE. Supercavity shapes and the hydro-
dynamic coefficients are acquired for a slender conical body at different cone semi-angles, cavitation
number and Mach number. The theoretical model and calculated results are verified by the comparison
with the results of other literatures. Finally we have analyzed the influences of fluid compressibility on
the supercavity shapes, pressure distribution over the cone surface and base drag coefficient. The above
results show that the predicted accuracy of the supercavity shape, maximal radius, aspect ratio, drag
coefficient is very good for small cone semi-angle till 15° both in incompressible and compressible flow.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Supercavitation can reduce the friction drag of a moving
underwater vehicle significantly. The high-speed supercavitating
projectiles with remaining kinetic energy in the end of trajectory
can be used to intercept torpedoes, destroy mines and break
underwater obstacles. Vlasenko (2003), Savchenko (1997) and
Kirschner (2001) have carried out some experiments on super-
cavitating projectiles, whose speeds were up to 1300, 1350 and
1549 m/s respectively which exceeded underwater sonic speed
(1450 m/s). At present, supercavitating projectile has been further
developed and greater progress has been made (Serebryakov,
2006, Serebryakov and Schnerr, 2003, Serebryakov et al., 2009).

Chou (1974), Guzevsky (1979), Kulkarni and Pratap (2000),
Ohtani et al. (2006) have studied the characteristics of the super-
cavitating flow and projectile movement without taking fluid
compressibility into account. Serebryakov (1973, 1992, 1994, 1998,
2001) have made theoretical studies of the incompressible and
compressible supercavitating flow based on the SBT and Matched
Asymptotic Expansions Method (MAEM). In this paper, we focus
on a high speed supercavitating flow around slender conical body
and take the fluid compressibility into account; a unified

theoretical model and numerical method have been established
for subsonic and supersonic supercavitating flow, and the derived
nonlinear integer-differential equations are successfully solved by
the proposed numerical discrete scheme and iteration method.
These results will provide a useful basis for next research on the
trajectory of high-speed supercavitating projectile.

2. Mathematical problems

A cylindrical coordinate system ðx; rÞ need to be established at a
slender cone base with x along the cone-cavity axis as shown in
Fig. 1. The radius r¼ r1ðxÞ ¼ εðxþ lÞ of the cone is given in advance;
the radius r¼ RðxÞ and length L of the supercavity are to be com-
puted. l and Rn are the length and base radius of the cone
respectively, and ε¼ Rn=l is a small parameter. Assuming the ideal
compressible flow around the cone is irrotational and steady, the
free stream velocity is U1. We adopt Riabouchinsky closure
scheme at the end of supercavitation for subsonic flow, which is
unnecessary for supersonic flow.

We suppose that the perturbation velocity potential is φ, the
perturbation velocity is ∇φ and the fluid velocity is ðU1iþ∇φÞ.
The mathematical problems describing the subsonic and super-
sonic flow are as following:
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In the flow field, for Ma1o1 or Ma141, the governing
equation is

ð1�Ma21Þ∂
2φ
∂x2

þ∂2φ
∂r2

þ ∂φ
r∂r

¼ 0 ð1Þ

whereMa1 ¼ U1=a1, hereMa1 and a1 are the Mach number and
the sonic speed of free stream at infinity respectively.

On the boundary of r¼ r1ðxÞ or r¼ RðxÞ, the kinematic boundary
condition is

∂φ
∂r

¼ U1þ∂φ
∂x

� �
dr
dx

ð2Þ

For x; r-1, the perturbation attenuation condition is

∇φ-0 ð3Þ
At the flow separation point of cone base, there are at least the

flow continuity condition and the energy conservation condition
(Serebryakov, 2006, Serebryakov and Schnerr, 2003, Serebryakov
et al., 2009). Here we adopt the flow continuity condition and it is
assumed the cavity starts at x¼ 0, and then at this point there is

r1 ¼ R and
dr1
dx

¼ dR
dx

ð4Þ

For water, the relationship between the pressure and density is
expressed by the Tait’s state equation, that is

pþB
p1þB

¼ ρ
ρ1

� �n

ð5Þ

where p1 and ρ1 are the pressure and density of free stream at
infinity respectively; p and ρ are the pressure and density at some
point in the flow field respectively; n is the ratio of specific heats,
n¼ 7:15 for water; B is a pressure constant, B¼ 2:98� 108Pa.

The Bernoulli's equation is

n
n�1

pþB
ρ

þU2

2
¼ n
n�1
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ρ1

þU2
1
2

ð6Þ

For the isentropic flow, we have

a2 ¼ dp
dρ

¼ n
pþB
ρ

; a21 ¼ n
p1þB
ρ1

ð7Þ

where a is the sonic speed at some point in the flow field.
According to Eqs. (5)–(7), for the flow around a slender body

the pressure coefficient is derived as follows:

Cp ¼ p�p1
0:5ρ1U2

1
¼ 2
nMa21

1�n�1
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:
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The natural cavitation number is defined as σ ¼ p1�pν
� �

=

ð0:5ρ1U2
1Þ, here p1 ¼ paþρ1gh, pa is the local atmospheric

pressure, ρ1 is the water density, g is the gravity acceleration, pν is
the saturated vapor pressure of water, and h is the height from the
water surface to the center of the cone base. On the supercavity
boundary 0rxrL� l, p¼ pv, so we have Cp ¼ �σ.

3. Integro-differential equations

For Ma1o1, Eq. (1) is an elliptic equation, which means that
the disturbance will spread in the flow field around the dis-
turbance source. For Ma141, Eq. (1) is a hyperbolic equation,

which means that the disturbance will only spread within the
Mach cone downstream. According to Eqs. (1) and (3), the per-
turbation velocity potentials in the subsonic and supersonic flow
can be written as follows respectively:

φðx; rÞ ¼ �
Z L

� l

qðξÞdξ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�ξÞ2þðmrÞ2

q ; Ma1o1 ð9Þ

φðx; rÞ ¼ �
Z x�mr

� l

qðξÞdξ
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�ξÞ2�ðmrÞ2

q ; Ma141 ð10Þ

where m¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Ma21
�� ��q

, qðξÞ ¼U1
dSðxÞ
dx jx ¼ ξ, SðxÞ ¼ πr2, here qðξÞ is

the source strength distributed along the longitudinal axis at
location ξ, and SðxÞ represents the cross-sectional area of the body-
cavity.

It is convenient to define a variable ζ as ζ ¼ R2. Using Eqs.
(2) and (4), and substituting Eqs. (9) and (10) into Eq. (8), after
some tedious manipulation, we can obtain the nonlinear integro-
differential equations describing the supercavity profiles ð0rxr
L� lÞ around the slender cone in subsonic and supersonic flow
respectively:Z L� l

0
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where ζ ¼ R2, σm ¼ 2
ðn�1ÞMa21

1� 1�nMa21
2 σ
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 �
.

It is the emphasis of this paper to acquire solutions of Eqs. (11) and
(12) for different Mach number, cavitation number and cone
angles.

4. Discrete and iterative methods

First assuming an initial supercavity shape, the supercavity
axial length is uniformly discretized into N panels, with a total
number of nodes Nþ1 and x1 ¼ 0, xNþ1 ¼ L� l. In each panel, a
locally quadratic polynomial is used to approximate ζ, that is

ζ ¼ ζiþaiðx�xiÞþbiðx�xiÞ2; i¼ 1;2;…;N ð13Þ
where ai and bi are the coefficients to be determined.

According to the continuous condition (4), we have a1 ¼ 2εRn,
and the recursion formula for coefficient aiþ1 can be obtained by
assuming that dζ=dx is continuous at each discrete node, so we get

aiþ1 ¼ aiþ2biðxiþ1�xiÞ; i¼ 1;2;…;N ð14Þ
According to Eq. (13), the accumulation expression of ζk at each

discrete node xk can be written as

ζk ¼ ζ1þ
Xk�1

i ¼ 1

½aiðxiþ1�xiÞþbiðxiþ1�xiÞ2�; k¼ 2;3; :::;Nþ1 ð15Þ

The key of computing the supercavity shape is to determine the
coefficient biði¼ 1;2;…;NÞ. For subsonic or supersonic flow, the
substitution of Eq. (13) into Eq. (11) or Eq. (12) leads to the system

Fig. 1. Slender cone and coordinate system.
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