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a b s t r a c t

A novel system identification method, Support Vector Regression (SVR), is proposed for identifying the
nonlinear roll motion equation of a FPSO vessel in regular waves. Firstly, the roll motion of a vessel is
simulated, and the simulated data are used to identify the parameters in the roll motion equation. Then
the roll motion is predicted by using the identified parameters, and the prediction results are compared
with the simulated data to verify the identification method. Secondly, model test data of a FPSO vessel
are used to identify the parameters in the roll motion equation. The roll motion is predicted by using the
identified parameters and compared with the model test data. In addition, by using the model test data,
the time histories of the nonlinear damping and restoring moments in the non-parametric roll motion
equation are identified and the identified results are used to predict roll motion. Comparison of the
prediction results with the model test data shows the validity of the identification method in identifying
the non-parametric roll motion equation. It is shown that the SVR-based identification method can be
effectively applied to parametric and non-parametric identification of the nonlinear roll motion equation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate prediction of the motion experienced by a vessel is
crucial for the design as well as safe and efficient operations. Generally,
the determination of the motion of a floating structure in six degrees
of freedom can be accomplished by commercial software based on
potential theory. However, because of the strong nonlinear nature of
the roll damping, the correct prediction of the roll motion may be
challenging. To predict the roll motion accurately, it is necessary to
estimate the characteristics of the nonlinear roll damping correctly.
Although the roll motion of ships and floating structures has been
investigated by many researchers for a long time since William Froude
in the 19th century, a universal method to predict the damping
moment which is a function of motion parameters is still absent.
Traditionally, there are three kinds of methods available for predicting
the roll motion, i.e., model test (Faltinsen, 1990), semi-empirical
method (Ikeda, 1978; Chakrabarti, 2001; Ikeda, 2004) and direct
numerical calculation (Wanderley et al., 2007; Yang et al., 2013).
During the last decade, system identification techniques, aiming at
finding the best mathematical model that relates the output to the

input of a system, have been used to analyze the roll motion of ships
and floating structures.

System identification techniques include parametric identifi-
cation and non-parametric identification. Parametric identification
can be applied to estimate unknown parameters in the equation
describing the roll motion of a vessel. Non-parametric identifica-
tion can be applied to model the roll motion of a vessel by means
of appropriate and sufficient input and output.

In the aspect of parametric identification, a number of methods
have been proposed and applied to identify the unknown linear and
nonlinear parameters in the roll motion equation. Based on a combi-
nation of the random decrement technique, a multiple linear regres-
sion algorithm and neural network technique, Mahfouz (2004) and
Haddara (2006) identified the ship roll motion equation by using the
measured stationary roll response. Unar (2007) applied MLP and RBF
neural network to identify the roll damping coefficients of a ship. Xing
and McCue (2009) applied artificial neural network (ANN) to identify
the unknown hydrodynamic parameters of two nonlinear models for
describing ship roll motion by using experimental data.

In the aspect of non-parametric identification, Jang et al. (2009)
proposed a method based on inverse formulism to recover the func-
tional form of the nonlinear roll damping and nonlinear restoring
forces in nonlinear oscillation systems by using themeasured transient
data. Owing to the application of a regularization method in the
identification process to overcome the numerical instability, the pro-
posed method can be applied to analyze the contaminated data. On
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the basis of the proposed method, Jang et al. (2010a, 2010b) identified
the functional form of the nonlinear roll damping for a particular ship
using the measured experimental data, and Jang (2011, 2013, 2014)
identified the nonlinear damping, nonlinear restoring forces and
external harmonic excitation of nonlinear systems by using con-
taminated data. One of the main merits of the proposed method is
that it can deal with contaminated data effectively, which is particu-
larly advantageous, since the real data are usually contaminated.
Besides, Xing and McCue (2010) applied ANN to model the roll motion
of ships at sea. Han and Kinoshita (2012a) presented an application of
a stochastic inverse non-parametric identification method for the
nonlinear damping in the general mechanical system; Han and
Kinoshita (2012b, 2012c) applied this method to identify the nonlinear
roll damping moment of a ship at zero forward speed and non-zero
forward speed, respectively.

Support Vector Machine (SVM), a new generation of machine
learning method, was first proposed by Vapnik (1999) in 1990s. Due
to its unique performance, SVM has been extensively applied in var-
ious branches of science and engineering. Compared with ANN, SVM
has several merits and demerits. Firstly, SVM is based on the criteria of
structural risk minimization, while ANN is based on the criteria of
empirical risk minimization, so SVM can avoid the over-fitting pro-
blem of data and achieve better generalization performance than
ANN, especially in the case of learning with small samples. Secondly,
by taking advantage of convex quadratic programming, SVM can
obtain the global optimal solution, while ANN is apt to fall into local
optimization. Thirdly, SVM's solution is sparse and only depends on
support vectors which consist of limited training samples. Fourthly, by
introducing kernel function, SVM can easily avoid the curse of
dimensionality, which is often encountered by ANN. Finally, owing to
its worse on-line workability, SVM is suitable for off-line machine
learning. According to its application, SVM can be divided into two
categories: one is Support Vector Classifier (SVC) which is often used
to solve classification problems, and the other is Support Vector
Regression (SVR) which is used to solve regressive problems. As to the
application of SVR in ship and ocean engineering, Luo and Zou (2009)
used Least Square-SVR to identify the hydrodynamic coefficients in
ship maneuvering motion equations. Zhang and Zou (2011, 2013)
applied SVR to identify the Abkowitz model for ship maneuvering
motion and the maneuvering hydrodynamic coefficients from captive
model test results. Xu et al. (2012, 2013) applied SVR to identify the
nonlinear coefficients in the dynamic model of underwater vehicles.
In these studies, parameteric identification was dealt with and the
validity of the identification method was verified.

In the present study, SVR with linear function as the kernel
function is applied to identify the unknown parameters in the
nonlinear roll motion equation of a FPSO vessel in regular waves. To
improve the efficiency of SVR, Sequential Minimal Optimization
(SMO) algorithm is applied to solve SVR. In order to validate the
applicability of SVR in the parametric identification of the roll
motion, case studies based on numerically simulated data and
model test data are designed. After that, SVR with Gauss radial basis
function as the kernel function is applied to identify the time his-
tories of the nonlinear damping and restoring moment in the non-
parametric roll motion equation by using model test data. Then the
roll motion is predicted using the identified nonlinear damping and
restoring moment, and the prediction results are compared with
the model test data to demonstrate the validity of the identified
non-parametric equation in the prediction of the roll motion.

2. Equation of roll motion

The roll motion of a vessel in regular waves can be described by
a second-order nonlinear ordinary differential equation in the

form (Bhattacharyya, 1978; Malta et al., 2010):

Ixxþ Jxx
� � €ϕþD _ϕ

� �
þR ϕ

� �¼M ð1Þ

where ϕ is the roll angle (rad); Ixx is the mass moment of inertia
(kg m2); Jxx is the added mass moment of inertia (kg m2); D _ϕ

� �
is

the damping moment (N m); R ϕ
� �

is the restoring moment (N m);
and M is the wave exciting moment (N m).

The roll damping term D _ϕ
� �

can often be represented by a linear
term plus a quadratic term in the form

D _ϕ
� �

¼D1
_ϕþD2

_ϕ _ϕj
��� ð2Þ

where D1 and D2 are the linear and nonlinear damping coefficients,
respectively. Assuming that the restoring force is linear, Eq. (1) can be
rewritten as

Ixxþ Jxx
� � €ϕþD1

_ϕþD2
_ϕ _ϕ þC0ϕ¼M

����� ð3Þ

where C0 is the linear restoring coefficient. Dividing Eq. (3) by the total
moment of inertia Ixxþ Jxx

� �
, the following equation is obtained

€ϕþp1
_ϕþp2

_ϕ _ϕ þcϕ¼ f
����� ð4Þ

where p1 ¼D1= Ixxþ Jxx
� �

; p2 ¼D2= Ixxþ Jxx
� �

; c¼ C0= Ixxþ Jxx
� �

and
f ¼M= Ixxþ Jxx

� �
. Considering that the incident waves are regular, the

wave exciting moment per unit virtual mass moment of inertia f can
be expressed as (Bhattacharyya, 1978)

f ¼ f a cos ω tþθ
� �

¼ f r cos ω tþ f i sin ω t ð5Þ
where f a and θ are the amplitude and phase shift of f, respectively;
f r ¼ f a cos θ and f i ¼ � f a sin θ. Substituting Eq. (5) into Eq. (4), the
parametric nonlinear roll motion equation can be rewritten as

€ϕþp1
_ϕþp2

_ϕ _ϕ þcϕ¼ f r cos ω tþ f i sin ω t
����� ð6Þ

3. Support Vector Regression

SVR is applied in this paper to identify the roll motion equation of a
FPSO vessel in regular waves. In the following, SVR is briefly intro-
duced, and more details can be found in Smola and Schölkopf (2004).

The training data is given as

T ¼ xi; yi
� �

; i¼ 1;2;⋯; l
� �

A ℜn �ℜ
� �l ð7Þ

where xiAℜn is the ith n-dimension training input vector and yi
Aℜ is the corresponding training output value; l is the number of
training sample; ℜn is the n-dimension Euclidean space and ℜ is
the set of real numbers.

The goal is to find a feature function gðxÞ that has at most ε
deviation from the actually obtained targets yi for all the training
data and at the same time is as flat as possible. The feature func-
tion gðxÞ of SVR is often described as

gðxÞ ¼wTΦ xð Þþb xAℜn� � ð8Þ
where ΦðxÞ is a transformation function which transforms the
input vector x in Euclidean space into X¼Φ xð Þ in feature space;
wAℜn is a weight matrix; bAℜ is the bias.

The optimization problem is

min
w; b; ξð�Þ

Jðw; ξð�ÞÞ ¼ 1
2
wTwþC

Xl

i ¼ 1

ξiþξ�i
� �

s:t: ⟨w;Φ xið Þ⟩þb
	 
�yirεþξi;

yi� ⟨w;Φ xið Þ⟩þb
	 


rεþξ�i ;
ξi; ξ

�
i Z0;

i¼ 1;2;⋯; l ð9Þ
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