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a b s t r a c t

Wave reflections at the wave-maker are a common problem in experiments and simulations of free-
surface flow around bodies in waves. To overcome this problem in numerical investigations, a new
method for deep water wave generation is presented. The waves are created by introducing mass source
terms in the governing equations for a small part of the solution domain. By positioning the wave-maker
inside the solution domain, wave damping can be applied to all domain boundaries. Wave reflections
from the solution domain boundaries can thus be eliminated in simulations. The formulation of the mass
source terms and the influence of the shape and location of the source region, where the mass source
terms are introduced, are investigated in two-dimensional (2D) flow simulations based on the Navier–
Stokes equations. It is demonstrated that the wave-maker can produce regular and irregular waves scale-
independently for wave height to length ratios of H=λr0:056. A simulation of constructive and
destructive water wave interference illustrates that incident waves can pass through the wave-maker
without significant reflection. The wave-maker can be easily implemented in most computational fluid
dynamics codes based on the Navier–Stokes equations (such as Reynolds-averaged Navier–Stokes (RANS)
or Euler equation solvers).

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The standard procedure for simulating free-surface waves
using the Navier–Stokes equations is to prescribe the corre-
sponding values for the velocities and volume fraction at the inlet
boundary, see e.g. Schellin et al. (2011). Alternatively, waves can be
generated in the same fashion as in experiments, e.g. by imposing
a flap-like movement of one or more boundaries of the solution
domain as in Perić et al. (2015). However, when the wave-
generating boundary is hit by waves reflected at structures
within the flow domain or other boundaries, it produces undesired
wave reflections traveling back into the solution domain, which
are often a problem in simulations as well as in experiments. This
is especially relevant when studying the flow around bodies,
which do not move or move with a velocity u lower than the phase
velocity c of the liquid phase (u=cr1), in combination with waves.

It is often the case in simulations of free surface flows that very
large or infinite domains are to be modeled although only the
solution in a small part of the domain is of interest. In order to
decrease the computational effort, it is necessary to keep the
solution domain as small as possible. Therefore, increasing the

domain size to delay the arrival of reflections from the wave-
maker in the domain parts of interest is not an option. For most
applications, modeling an infinite domain means that waves tra-
veling out of the solution domain must not be reflected from its
boundaries.

In flow simulations based on the Navier–Stokes equations,
wave reflections from domain boundaries can be minimized by
coarsening the computational grid towards the corresponding
boundary, or by applying a numerical damping zone (also called
sponge layer, porous media zone, etc.) in the vicinity of the
boundary, where the waves are damped via source terms in the
governing equations. Several approaches have been presented for
this (e.g. Cao et al., 1993; Choi and Yoon, 2009; Ha et al., 2011;
Israeli and Orszag, 1981; Park et al., 1999). The latter family of
methods is widely used in commercial and research CFD solvers. In
this paper, the wave damping approach by Choi and Yoon (2009) is
used. However, these approaches cannot be applied to wave-
generating boundaries since the created waves would experience
damping as well. Another option, which is not further considered
in this work, is to combine boundary-based wave generation with
wave destruction, by using active wave absorption techniques (e.g.
Cruz, 2008; Higuera et al., 2013; Schäffer and Klopman, 2000) or
by either forcing the flow to a known solution in the vicinity of the
boundary or coupling the Navier–Stokes-based flow solver to
another (e.g. potential flow based) solver (e.g. Ferrant et al., 2008;
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Guignard et al., 1999; Kim et al., 2012, 2013; Wöckner-Kluwe,
2013).

An alternative to wave generation at the domain boundaries is
to place the wave-maker inside the solution domain. In this case,
wave damping can be applied to all domain boundaries, which
requires that waves can pass through the wave-maker undis-
turbed, i.e. without reflections. This can be achieved by introdu-
cing localized source terms in the continuity and/or the momen-
tum conservation equations. In this work, only wave generation
based on mass sources will be discussed. Several such wave-
makers have been proposed so far. In Boussinesq-type equations, a
line source wave-maker was presented by Larsen and Dancy
(1983) and source function methods have been proposed by Wei
et al. (1999). A generalization of these and other source wave-
makers for Boussinesq-type equations can be found in Liam et al.
(2014). Liam et al. (2014) also discuss domain-internal wave-
makers for other governing equations. Some of these are also valid
in deep water, such as Groesen et al. (2010) for the AB-equations.
Furthermore, domain-internal wave-makers have been proposed
for potential flow solvers based on the boundary element method
(e.g. Brorsen and Larsen, 1987; Chatry et al., 1999). For flow
simulations based on the Navier–Stokes equations, Lin and Liu
(1999) presented a 2D shallow-water wave-maker, which is based
on injecting and extracting mass in a rectangular source region
below the free surface. The method was extended to 3D by Ha
et al. (2011). However, all these wave-makers are either restricted
to shallow water conditions (depth dr0:05λ) or have not yet been
shown to be applicable to viscous flow simulations in Navier–
Stokes-type equations.

Therefore, in this work, the method by Lin and Liu (1999) is
taken as a starting point to develop a deep water (dZ0:5λ) wave-

maker for Navier–Stokes-type equations based on localized source
terms in the continuity equation. In Section 3, the approach by Lin
and Liu (1999) and the necessary modifications for the application
to deep water are discussed. Furthermore, the main characteristics
of the presented deep water wave-maker are briefly described. The
subsequent sections illustrate the capacities and peculiarities of the
wave-maker via the results from 2D flow simulations. A grid study
is performed in Section 4. The influence of the source term as well
as the source region shape and location are investigated in Sections
5–7. Section 8 discusses the influence of turbulence modeling and
viscosity on the wave-maker performance. The capability to simu-
late irregular waves and to allow waves to pass through the wave-
maker without significant reflection is discussed in Sections 9 and
10. Appendix A gives an overview of the linear wave theory for-
mulas employed in this work. Although all simulations are per-
formed in 2D, the wave-maker can be applied to 3D without
modification (Perić, 2013; Perić and Abdel-Maksoud, 2015).

2. Governing equations and solution method

The governing equations for the simulations are the Navier–
Stokes equations, which consist of the equation for mass con-
servation and the three equations for momentum conservation:
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Nomenclature

All indices used (i, j, k,…) run from 1 to 3 and the Einstein sum-
mation convention applies. Index0 denotes wave parameters from
deep water linear wave theory.

A source region cross-section area: A¼ rw � rh
2D two-dimensional
3D three-dimensional
a wave amplitude
c phase speed
C Courant number
CFD computational fluid dynamics
CV control volume
d water depth
Fr Froude number
FVM finite volume method
g gravitational acceleration
H wave height
ha distance of the source region top to the undisturbed

free surface
ij unit vector in the xj-direction
K dimensionless coefficient for scaling the mass

source term
k wave number or turbulent kinetic energy
Lx; Lz dimensions of the simulation domain
n unit vector normal to S or normal to the source region

in horizontal plane
p pressure
qc sum of all mass source terms
qi sum of all volumetric momentum source terms in the

xi-direction

qdz momentum source term for damping of the w-velocity
component

qαi
volumetric source term of αi

rw source region width in the x-direction
rh source region height in the z-direction
Δx;Δz cell size in the x- and z-direction
x; y; z Cartesian coordinates, also denoted as x1; x2; x3
xd extent of the damping zone from the corresponding

boundary
xr distance of the source region center to the nearest

domain boundary
RANS Reynolds-averaged Navier–Stokes
S closed surface of CV
t time
Δt time step
T wave period
ui Cartesian velocity component in the xi-direction
v velocity vector of the fluid
V volume of a CV
VOF volume of fluid
αi volume fraction of phase i, here either air or water
ε turbulent dissipation
η free-surface elevation
λ wavelength
μ dynamic viscosity
ρ density
τij component of the viscous stress tensor
φ phase shift
ω wave frequency or specific dissipation
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