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a b s t r a c t

Identification of the first and second-order surge motion transfer functions of a truss spar platform from
model test data is presented in this paper. The identification is carried out by estimating the time-varying
kernels coefficients of a second-order Volterra model. The coefficients are estimated using proposed
method, named particle swarm optimization based Kalman smoother (PSO-KS). System input–output
data for identification process are wave height and surge motion from a scaled 1:100 model of a pro-
totype truss spar. The applicability of proposed method is assessed numerically and experimentally
under unidirectional long-crested random waves. The results show that the linear and quadratic fre-
quency response functions (LFRF and QFRF) as well as the wave and low frequency responses of a truss
spar platform can be well identified either in time or frequency domains. The LFRF and QFRF have high
resolution so that evolution of the nonlinear wave interactions can be revealed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

When a moored floating structure is subjected to random
waves, there will be interaction effects between the waves and the
structure (Faltinsen, 1990). The nonlinear effects are known to be
important in the analysis and design of floating structures and
usually approximated to the second-order. Those effects appear in
the surge motion of moored or tethered offshore structures and
are of great importance in the case of mooring and riser systems.
The surge motion of floating structures can be split into a mean
excursion, wave frequency response (WFR) and low frequency
response (LFR). The WFR is linear response which is linearly pro-
portional to the wave height and corresponds to the frequency of
randomwaves as excitation. The LFR is nonlinear response, known
as slow-drift motion and qudratically proportional to the wave
height. The LFR lies within the resonant bandwidth of the floating
structures results in large response since it forces the structure at
its resonant frequencies. The existence of LFR is a typical non-
linearity in floating structures and well documented in literatures,
such as Newman (1974) and Pinkster (1980). To compute the LFR,
numerical models are usually developed by generating the equa-
tion of motion of the structures and solved by numerical methods.
This effort has been carried out by many researchers such as
Spanos et al. (2005) and Naess et al. (2007). Furthermore, recent

numerical modeling of LFR has been carried out by Montasir and
Kurian (2011) by investigating the structural displacement, axial
divergence, free-surface fluctuation, convective acceleration and
temporal acceleration due to the second-order velocity potential
as the causes for the existence of the LFR.

Numerical approach, however, requires rigorous mathematical
formulations. It is less practical for applications that require fast
calculations, unless simplifications are imposed on the physical
modeling as proposed by Low and Langley (2008) as an example.
Also, experimental verifications are rarely conducted. Due to these
constraints, empirical models might be considered as alternative.
This approach involves system identification methods. Several
applications of system identification in offshore structures can be
found in references such as Stansberg (1994, 1997a, 1997b), Kwon
et al. (2005), Paik and Roesset (1996), Bunnik et al. (2006), Bir-
kelund et al. (2002), Kim (2004), Liu et al. (2004), Liu and Su
(2005), Torrest et al. (2014) and Taylor et al. (2005). Some identi-
fication models have been used to model the nonlinear dynamic of
offshore structures such as Volterra model in Kwon et al. (2005),
Paik and Roesset (1996), Bunnik et al. (2006), Birkelund et al.
(2002) and Kim (2004), NARMAX model in Liu et al. (2004) and Liu
and Su (2005) and Lienard model for a marine riser in Torrest et al.
(2014). Particularly, identification of the WFR and LFR from the
measured system input–output can be found in Kim (2004). Fre-
quency domain Volterra model based on higher-order spectral
analysis (HOSA) method had been used for the purpose. The
finding result is extraction of the LFR from model test data is more
difficult than the WFR in sea state below than rough sea state. That
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is because the quality of extraction depends on the quality of
transfer functions estimates. A disadvantage of using HOSA is that
this method introduces bias and high variance in the estimates
because of the higher-order spectral moments property. Also, the
optimal sample length in calculating transfer functions from dis-
crete experimental data must be determined according to Taylor
et al. (2005) since it affects the accuracy of estimation. The lim-
itations above suggest that there is a need for the improvement of
the Volterra model in the context of identification of the WFR and
LFR from model test data.

For these reasons, an alternative method that avoids the use of
HOSA method is proposed. Firstly, the kernel coefficients are
identified by minimizing the surge motion response differences
between measurements and simulations by using proposed esti-
mation method, named particle swarm optimization based on
Kalman smoother (PSO-KS). Kalman smoother is combination
between Kalman filter and smoothing equations which will be
discussed in the next section. Applications of Kalman filter in
offshore engineering can be found in Mizumura (1984), Wilde and
Kozakiewicz (1993), Altunkaynak and Ozger (2004), Fossen and
Perez (2009) and Banazadeh and Ghorbani (2013). The proposed
method is completely carried out in time domain Volterra model
which is in sharp contrast with the previous reports (Birkelund
et al., 2002; Kim, 2004). Link from time to frequency domain is
provided by the kernel coefficients by converting the coefficients
to time-varying generalized frequency response function via har-
monic probing method. Since the transfer functions are repre-
sented by the kernel coefficients, a robust and accurate estimation
technique is needed to estimate these coefficients. Hence,
becomes the objective of this study. Proposed method is applied to
the measured wave height and surge motion response of a truss
spar model to test its applicability. The identification process will,
therefore, run in wave-to-motion transfer function (Taghipour
et al., 2008).

This paper is organized as follows: Section 1 gives research
background. Section 2 explains the conversion of the time domain
Volterra model into a single state-space model. By assuming the
kernel coefficients following a Gauss–Markov process, the first and
second-order kernels are represented in the form of adaptive fil-
ters. KS method is introduced to estimate the kernel coefficients.
Section 3 discusses the implementation of PSO algorithm for
optimization. Section 4 describes the modification of regressor
vector of Volterra model in terms of forward, backward, combined
forward–backward estimator. Section 5 describes the coherence
functions. Section 6 presents the extraction results obtained from

numerical simulation and experimental data. Finally, Section 7
provides the concluding remarks.

2. Representation of Volterra model in a state-space model

2.1. First and second-order Volterra kernels in the form of adaptive
filters

Nonlinear relationship between system input u and system
output y is often expressed by a functional power series of system
input u and known as the Volterra model. In discrete time index n
and data length N, Volterra model is written as,

ŷq nð Þ ¼
XK

k1 ; kq ¼ 1

c0; q k1 ;⋯; kq;n
� �

∏
q

i ¼ 1
u n�kið Þ ; ð1Þ

where q is the nonlinearity degree and K is the memory length.
Eq. (1) shows that the current output is a multidimensional con-
volution between system inputs u n�kið Þ and impulse response
functions c0; q k1 ;⋯; kq;n

� �
up to q-order with ∏q

i ¼ 1u n�kið Þ
called q-th – order-lag-product operator. Decomposition of Eq. (1)
into linear and quadratic responses can be illustrated as,

1. Setting the lag of system input q¼ 1, Eq. (1) results Eq. (2),

ŷ1 nð Þ ¼
XK
k1 ¼ 1

c0; 1 k1;nð Þ u n�k1ð Þ : ð2Þ

2. Setting the lag of system input q¼ 2, Eq. (1) results Eq. (3),

ŷ2 nð Þ ¼
XK

k1 ; k2 ¼ 1

c0; 2 k1; k2;nð Þ u n�k1ð Þ u n�k2ð Þ : ð3Þ

Since this study focuses in the first-order and second-order
responses, Eqs. (2) and (3) are combined to form Eq. (4),

ŷ nð Þ ¼
XK
k1 ¼ 1

c0; 1 k1;nð Þ u n�k1ð Þ

þ
XK

k1 ; k2 ¼ 1

c0; 2 k1; k2;nð Þ u n�k1ð Þ u n�k2ð Þ : ð4Þ

Eq. (4) is known as second-order Volterra model (Azpicueta-
Ruiz et al., 2011; Luigi and Ahsan, 2010), where c0; 1, c0; 2 are the
first-order and second-order Volterra kernel coefficients, respec-
tively and suggest that the coefficients are time-variant so that it
can be utilized for identification linear time-varying (LTV) and
nonlinear time-varying (NLTV) systems. For easy interpretation of
Eq. (4), it can be reformulated into matrix form and expressed in
Eq. (5),

Due to symmetrical property in the nonlinear part of Eq. (5),
only the upper of the triangular matrix is taken for the estimation

(5)
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