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a b s t r a c t

Though the focusing method can effectively generate waves which satisfy the definition of rogue waves
at a specific position and moment, however, being inherently not nonlinear, the focusing model is still a
controversial rogue wave generation method. Recently, nonlinear models are becoming more popular for
rogue wave generation in physical and numerical tanks. In this paper, a weakly nonlinear model known
as the Peregrine breather solution of the cubic Schrödinger equation is studied under finite water depth.
In contrast with the focusing model, nonlinearity is considered throughout the simulation process, i.e.,
from the wave model to the generated waves. The numerical results are validated against theoretical
solutions as well as experimental measurements. To further investigate their temporal-frequency
characteristics, a wavelet analysis is performed on the generated Peregrine breather, and the concepts
of life time and traveling distance are studied. The influence of higher order nonlinearity, i.e., the 2nd-
order Stokes component of the perturbed expansion under finite water depth, is taken into account. We
also discuss the influence of 2nd-order term on the life time, travel distance, and energy distribution.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rogue waves, also named freak waves, are giant ocean waves
which induce great hazards on the safety of ships and marine
structures. Usually, rogue waves are defined as waves whose
heights exceed the significant wave height in 2 times (Kjeldsen,
2005; Sand et al., 1990). For years, researchers have been working
on the physical mechanisms of rogue waves. Although linear
models give a simple and intuitive grasp of rogue waves, nonlinear
models play an important role in explaining their physical
mechanisms due to the giant crest and steepness. Kharif and
Pelinovsky (2003) and Pelinovsky and Kharif (2008) gave a
comprehensive overview of the existing rogue-wave models.
Categorized by their governing equations, the nonlinear models
can be divided into several types, i.e., the models based on the
nonlinear Schrödinger (NLS) equation under finite or deep water
depth (Zakharov et al., 2006), the Korteweg-de Vries (KdV)
equation under shallow water depth (Kit et al., 2000), and more
universally, the Laplace equation or the Navier–Stokes (N–S)
equations, etc. The NLS equation is a well-known equation not
only in wave mechanics, but also in optics and quantum

mechanics, and has been thoroughly studied both analytically
and numerically. On the basis of the NLS equation, rogue waves
can be explained as driven by modulational (Benjamin–Feir)
instability (Zakharov et al., 2006; Osborne et al., 2000) or some
breather solutions which contain nonlinear focusing effects
(Peregrine, 1983).

Apart from their physical mechanisms, researchers are also
studying rogue wave generations in laboratories and numerical
tanks. The superposition-based model is a widely utilized method
under laboratories and numerical wave flumes (Cui et al., 2013;
Zhao et al., 2010; Cui et al., 2011; Fochesato et al., 2007; Sun et al.,
2009; Liu et al., 2011). In the superposition model, the rogue wave
is treated as the superposition of wave components with various
frequencies and phases. With these wave components, the paddle
movement signal is obtained based on a linear wave-maker
transfer function (Dean and Dalrymple, 1991). By adjusting the
phases and energy proportions of these wave components, giving
a huge crest at a designated location and moment, a giant wave or
rogue wave could be generated. Sometimes, a focusing wave train
is appended to the random wave field to improve the simulation
efficiency. Despite the superposition-based model is capable of
generating large waves which satisfy the definition of rogue waves
(Cui et al., 2013), the assumption underlying the superposition of
waves is the linear free surface condition. In addition, the wave-
maker transfer function is also essentially linear. Thereby, the
superposition-based model sometimes gives rise to controversies
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as it fails to take into account the nonlinearity of rogue-wave
phenomena.

To avoid the dispute mentioned above, more researchers have
turned to rogue-wave generation in a nonlinear manner, based on
nonlinear models such as NLS, KdV and N–S equations. A prevalent
model is the Peregrine breather solution of the cubic NLS equation,
which was first deduced by Peregrine (1983) on the foundation of
the solution given by Ma (1979). Chabchoub et al. (2011, 2012a,
2012b) utilized the Peregrine breather to generate deep-water
rogue waves in laboratory. Onorato et al. (2013), using the
Peregrine breather, simulated a rogue wave which is similar to
the famous “New Year Wave” (Haver and Andersen, 2000), and
performed a sea-keeping test on a chemical tanker. Comparisons
against theoretical solutions obtained by Chabchoub et al. (2011,
2012a, 2012b) and Onorato et al. (2013) showed that the Peregrine
breather can be properly simulated in laboratory. However, small
mismatches could still be observed, especially between the gra-
dients in amplitude modulations (Chabchoub et al., 2012a). Perić
et al. (2015) analyzed the Peregrine breather by direct numerical
simulations on the two-phase Navier–Stokes model, with a VOF
method applied to rogue wave dynamics up to the initial stages
of wave breaking. Didenkulova et al. (2013) demonstrated that
the rogue wave packet becomes wider and contains more indivi-
dual waves in intermediate rather than in deep waters. One
difficulty has to be overcome for rogue-wave generation using
nonlinear models, i.e., the motion of wave paddle has to be
carefully designed to create a nonlinear rogue wave within a
specific region.

The experiments of Chabchoub et al. (2011, 2012a) and Onorato
et al. (2013) are based on the 1st-order Peregrine breather wave.
Recently, researchers have been working to generate high-order
rogue waves, for instance the high-order Peregrine solutions (also
known as Akhmediev–Peregrine breathers), using tools such as
the Darboux transformation (Xu et al., 2011). Slunyaev et al. (2013)
studied rational solutions using models of Dysthe equation and
potential Euler equations. Chabchoub et al. (2012b) observed a
hierarchy of up to fifth-order deep-water rogue waves in a water
tank. He et al. (2013) and Zhang et al. (2014) introduced a
mechanism for generating higher-order rogue waves (HRWs) of
the NLS equation. Though high-order deep-water rogue waves
have been adequately studied both theoretically and experimen-
tally, the study of high-order rogue waves under finite water depth
is still not much.

In this paper, a series of numerical simulations are performed
on the Peregrine breather solution of the cubic NLS equation, using
a 2-D numerical wave channel based on the incompressible N–S
equations. First, the primary harmonic, i.e., the 1st-order Stokes
component is simulated. In order to validate our numerical
settings, the numerical results are compared against the experi-
mental measurements of Chabchoub et al. (2011, 2012a). To
describe the generated Peregrine breathers, we employ the life
time and travelling distance proposed by Chabchoub et al. (2012a).
Then, the expression of 2nd-order harmonic, as well as the
corresponding particle velocity and pressure are deduced, which
is not considered in Chabchoub's and Onorato's experiments. The
2nd-order Stokes component is generated in a numerical channel,
and is validated against the theoretical expression. The 2nd-order
harmonic envelope is studied to analyze the high-order nonlinear
effect on the wave contour. Comparisons are also performed to
investigate the influence of higher nonlinearity on the Peregrine
breather surface history, as well as its life time and travelling
distance. During simulations, the energy spectrum is obtained by
performing a Discrete Fourier Transformation (DFT) on the surface
elevation histories, and a wavelet analysis is conducted to further
reveal the temporal-frequency distribution of wave energy.

2. Peregrine breather wave

In order to investigate the scales and nonlinearities of various
degrees, usually a multiple scale perturbation expansion, formu-
lated as (1), is performed on the original Euler equation as follows:

ϕ¼
X
n ¼ 1

εnϕn; ζ ¼
X
n ¼ 1

εnζn ð1Þ

Here ϕn and ζn are the velocity potential and surface elevation
of the n-th order (or the n-th order Stokes component). ε¼ kA0 is a
small parameter, where k and A0 are the wave number and
amplitude of carrier waves, respectively. ϕn and ζn are functions
of coordinates under various scales, which are written as

ϕn ¼ϕn x; x1; x2;…; z; t; t1; t2;…ð Þ
ζn ¼ ζn x; x1; x2;…; t; t1; t2;…ð Þ

(
ð2Þ

where the scaled coordinates are

x; x1 ¼ εx; x2 ¼ ε2x; …
t; t1 ¼ εt; t2 ¼ ε2t; …

(
ð3Þ

Though the potential component ϕn is of order n, it contains
harmonics of various orders, and is further formulated as

ϕn ¼
Xn

m ¼ �n
eimψϕnm ð4Þ

where i is the imaginary unit, ψ ¼ kx�ωt is the wave phase, and ω
is the angular frequency of carrier waves.

Based on Eqs. (1)–(4), the Euler equation can be expanded into
a series of equations, which corresponds to different orders and
harmonics. By solving these equations, the velocity potential and
surface elevation of each order and harmonic could be obtained.
These expansions and equations are not hard to deduce, but the
deduction is tedious and interminable. The detailed derivation
could be found in Mei (1989), and we only refer to some useful
expressions in this paper.

It should be mentioned, the following terms are adopted
hereafter to make our discussions brief and clear: 1st-order Stokes
component, i.e., ζ1 of Eq. (1); 2nd-order Stokes component, i.e., ζ2
of Eq. (1); 1st-order surface elevation, i.e., ζ ¼ εζ1; 2nd-order
surface elevation, i.e., ζ ¼ εζ1þε2ζ2:

2.1. 1st-order Stokes component

The 1st-order Stokes component only considers the first term
of Eq. (1), and is written as

ϕ1 ¼ϕ10�
g cosh Q
2ω cosh q

iAeiψ þc:c:
� �

ð5Þ

ζ1 ¼
1
2

Aeiψ þc:c:
� �

ð6Þ

where Q ¼ k zþhð Þ, q¼ kh, h is the water depth, g is the gravita-
tional acceleration, c:c: denotes the complex conjugate. It should
be noted that the origin of coordinate is positioned on the still
water surface, thus z¼ 0 represents mean water surface and
z¼ �h the bottom. The dispersion relationship is ω2 ¼ gk
tanh khð Þ. ϕ10 is a “constant” term for the 1st-order potential,
which describes the mean flow, and A is the envelope of carrier
waves. Though being constants under a normal scale, ϕ10 and A
could slowly change over a larger scale t1; t2;… and x1; x2;…,
governed by the equations below

∂ϕ10

∂ξ
¼ �

ω2 2ωcosh2qþkCg

� �
4k sinh2q gh�Cg

� � A
�� ��2 ð7Þ
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