
Nonlinear dynamics of an underwater slender beam with two axially
moving supports

Mingwu Li a,c, Qiao Ni a,b,n, Lin Wang a,b

a Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, PR China
b Hubei Key Laboratory for Engineering Structural Analysis and Safety Assessment, Wuhan 430074, PR China
c Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, PR China

a r t i c l e i n f o

Article history:
Received 30 August 2014
Accepted 13 August 2015

Keywords:
Underwater towed body
Moving support
Stability
Period-3 motion
Quasi-periodic motion
Chaotic motion

a b s t r a c t

This paper investigates the nonlinear dynamic behavior of a towed underwater beam with two
supported ends. The equation of motion is derived by the Newtonian approach. An “axial added mass
coefficient” is taken into account to get a better approximation for the mass of fluid attached to beams.
Nonlinear deflection-dependent axial forces are also considered. The dynamics of the system is studied
via Galerkin approach and Runge-Kutta technique. The linear dynamic analysis is conducted firstly. The
solution for natural frequency is obtained and the result shows that the beam will subject to buckling-
type instability if the moving speed exceeds a certain value. Then, the buckled configuration is obtained
and its stability is discussed in the nonlinear dynamic analysis. It is found that the subcritical Hopf
bifurcation of the first buckled mode may occur when the towing speed reaches to a critical value. In
addition, the nonlinear dynamic responses are calculated and the periodic-1, period-3, period-5, quasi-
periodic and chaotic motions are detected. Meanwhile, the result shows the route to chaos for the beam
is via period-3 motions or quasi-periodic motions. The effects of several system parameters on the
chaotic motion are also studied.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of underwater towed systems has attracted
much attention because of its wide application, such as slender
structures towed to the location of installation (Sarv and John,
2000; Kyriakides and Corona, 2007). It is noted that the under-
water towed slender structure belongs to axially moving systems
since the direction of the towed motions is along the axial of the
slender structure in general. Meanwhile, the axially moving
systems can be grouped into two types: first, systems with fixed
and unmovable support; and second, systems that the axial
motion of the structures is induced by the axial movements of
the supports (Ni et al., 2014). Obviously, the underwater towed
slender structure belongs to the second type, i.e. axially moving
systems.

The linear and nonlinear dynamics of the first type of axially
moving materials, including band saw (Mote, 1965) and axially
moving elastic beams (Öz, 2001; Ding and Chen, 2009; Ghayesh,
2012), have been investigated by many researchers. To date, only
few literatures can be found on the first type of axially moving

systems with the consideration of fluid-structure interactions. The
dynamics of a cantilever beam being deployed in a dense incom-
pressible fluid was explored by Taleb and Misra (1981). However,
the fluid-dynamic forces were not correctly accounted for in the
analysis performed by Taleb and Misra (1981), as proved by
Gosselin et al. (2007). As stated by Gosselin et al. (2007), in the
axial direction of the beam, the layer of fluid which stays attached
to the beam is in fact considerably smaller than that of this lateral-
direction virtual mass. Thus, an “axial added mass coefficient” was
introduced in order to better approximate the mass of fluid which
stays attached to the oscillating beam while moving in the axial
direction. With axial added mass coefficient taken into account,
Wang and Ni (2008) investigated the linear vibration and stability
of the first type axially moving pinned-pinned, clamped-clamped
and clamped-pinned beam immersed in fluid by DQM.

The studies on the dynamics of the second type of axially
moving systems are mainly focused on the underwater towed
systems because of its wide application in ocean engineering.
Two-dimensional (2-D) motions of the flexible cylinders towed
underwater have been investigated by several researchers
(Païdoussis, 1968; Dowling, 1988a, 1988b). Païdoussis (2004),
(section 9, chapter 8) has reviewed the 2-D dynamics of towed
cylinders systematically. Recently, Kheiri et al. (2013a, 2013b)
explored the three-dimensional (3-D) dynamics of long pipes
towed underwater. It is noted that the above mentioned studies
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on the dynamics of underwater towed systems are mostly focused
on the linear aspect and a very limited number of studies have
dealt with nonlinear models. A nonlinear model was developed for
the dynamics of towed flexible slender cylinders by Kheiri et al.
(2013c). The dynamic equations of a flexible slender body, which is
connected at one end to a fixed support via a towrope and is free
at the other end, are derived.

An important feature of the second type of axially moving
systems is that the support ends are subjected to axial motion and
hence the systems are of moving boundaries. In the above
mentioned studies on the dynamics of underwater towed systems,
the analytical model was developed in a floating coordinate
system, which is attached to the towed systems, and then the
dynamic equations were often derived in the floating coordinate
system directly. However, it is noted that the Newton's law of
motion holds only with respect to inertial frame of reference. As a
result, the applicability of the model developed above needs to pay
more attention. In addition, as to the mentioned studies on the
dynamics of cylinder towed in fluid, the towing system is con-
sidered identical to a cylinder in axial flow (Païdoussis, 2004,
pp. 930) if the cross-flow effect is neglected; and then the axial-
direction added mass is equal to the lateral-direction virtual mass.
However, as presented by Gosselin et al. (2007), an “axially added
mass coefficient” should be introduced to better approximate the
force of the surrounding fluid acting on the beam. Recently, with
axially added mass coefficient taken into account, Ni et al. (2014)
studied the linear vibration and stability of a cantilever beam
attached to an axially moving base immersed in fluid, which
belongs to the second type axially moving systems. In the work
by Ni et al. (2014), two coordinate systems, i.e., the absolute
coordinate frame which is an inertial frame of reference, and the
moving coordinate frame attached to base, have been introduced.
The dynamic equations were derived in the absolute coordinate
frame firstly and then the equation of motion in the moving
coordinate was obtained by utilizing the transformation of coor-
dinates between the absolute and moving coordinates. The abso-
lute coordinate frame is introduced to apply the Newton's law and
the moving boundaries in the absolute coordinate frame become
fixed in the moving coordinate frame. Thus, the modeling method
presented in Ni et al. (2014) is of wide applicability and will be
adopted in this study. It is well known that boundary conditions
have significant influence on the vibration and stability of dis-
tributed parameter systems. For instance, the dynamics of canti-
lever slender structures and supported structures (both two ends
are supported) may be very different (Païdoussis, 1998). The
inextensibility condition of the cantilever slender structure cannot
apply to the nonlinear dynamic analysis of slender structures with
two supported ends since the axial stretch force should be
considered. It is noted that the nonlinear model developed in
Kheiri et al. (2013c) was the cantilever case and the axially added
mass coefficient was not taken into account. Thus, the dynamics of
a towed supported beam, especially the nonlinear aspects, with
the consideration of axial added mass coefficient, need to be
further studied. This motivates our study. The contributions of
this paper mainly include following three points: (i) An nonlinear
mathematical model for the underwater supported beams with
axially moving supports with the consideration of nonlinear axial
stretch induced by large deflections are developed; (ii) The pre-
buckling and post-buckling dynamics of this system are studied
carefully and various nonlinear dynamic motions including peri-
odic-1, period-3, period-5, quasi-periodic and chaotic motions are
detected; (iii) Although the numerical study in this paper focuses
on the constant moving speed, the dynamic equations with the
consideration of time-dependent moving speeds, which are
derived in the problem formulation section, lay a solid foundation
for further studies such as the dynamic response in acceleration

process (Gosselin et al., 2007) and the parametric resonance
vibration of this system which are induced by the fluctuation of
moving speeds. In fact, parametric resonances have significant
effects on the dynamics of slender structures, as can be seen in Öz
and Pakdemirli (1999); Öz et al. (2001) and Panda and Kar (2008).

The rest of this paper is organized as follows. First, the equation
of motion of the slender beam in fluid, which is towed by the
axially moving supports, will be derived. Second, the discrete
equation of motion is obtained by the Galerkin approach. Third,
the linear dynamic analysis, which also applies to the linearized
system of the nonlinear system of the trivial equilibrium config-
uration, will be given. The effect of axially moving speed of
supports, mass ratio, and several other system parameters on
the free vibration and stability of the beam is analyzed by
calculating the natural frequencies and the lowest critical towing
speed. Finally, the nonlinear dynamics of the system will be
investigated. The buckled equilibrium solution will be obtained
and its stability will be discussed in detail. Moreover, the pre-
buckling and post-buckling dynamic responses will be studied.

2. Problem formulation

The system under consideration, shown in Fig. 1, consists of a
beam towed by axially moving supports with known motion LðtÞ.
Let this beam be of diameter D, with length l, area moment of
inertia I, mass per unit length m and modulus of elasticityE.
Consider this system to be immersed in an incompressible fluid
of density ρ, with boundaries sufficiently distant to have negligible
effect on the fluid forces on the beam. In the present study, it is
assumed that no separation occurs in the flow around the beam,
and that the forces of the fluid acting on a beam element are the
same as those acting on a corresponding element of a long
undeformed beam of the same cross-sectional area and inclina-
tion. Moreover, the effects of shear deformation and rotary inertia
of the beam are neglected. In addition, the two ends of the beam is
assumed to be simple supported and the gravity are neglected to
simplify analysis.

Two coordinate systems will be introduced in this problem, the
absolute coordinate frame ðx; zÞ fixed in a certain spatial point and
the moving coordinate frame ðx; zÞ fixed in the left support ends. It
is noted that the moving boundaries in the absolute coordinate
system will become fixed in the moving coordinate system. The
equation of motion in the absolute coordinate will be given firstly.
Then, the equation of motion in the moving coordinate will be
obtained by the coordinate transformation.

The axial and transverse displacement of beam are denoted as
uðx; tÞ and wðx; tÞ, respectively. Consider the balance law of an
infinitesimal element of the beam, the equation of motions in the
absolute coordinate system is obtained (Eqs. (17) and (18) in Ni
et al., 2014)
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Fig. 1. The beam attached to axially moving supports immersed in fluid.
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