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a b s t r a c t

Flexible Segment Model (FSM) based optimization method is proposed as a robust dynamics calculation
method for underwater Moving Slender Bodies (MSBs). In the method, the underwater MSB is divided
into a series of flexible segments, their deformations are analyzed individually, and the dynamics cal-
culation is accomplished by the optimization of a mechanical equilibrium function in a simple form.
Because the whole deformation of a MSB is decomposed into small ‘curve’ deformations of all segments,
the dynamics calculation needs a relatively small number of segments for accuracy. The comparison with
experimental results shows that the numerical results by FSM based optimization method have good
accuracy. Moreover, the tests of sensitivity and error tolerance show the numerical calculation by FSM
based optimization method has high stability.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

MSBs often occur in the ocean engineering: marine cables in
the towed system, umbilicals of forwarding ROVs, free hanging
risers in re-entry operation, underwater waving slender struc-
tures, and so on. Due to their flexibility, they may undergo large
deformations. Under bad sea condition or high stress, they are
vulnerable and easy to be destroyed. To predict their underwater
configuration and tension, it is necessary to make dynamics
calculation.

In the past decades, there came up a lot of dynamics calculation
methods for underwater cables or risers. Cables are of high flexibility,
so they may take on large bending deformation anywhere. Howell
(1992) investigated the dynamics of low-tension cables. He for-
mulated 3D nonlinear motion equations for a submerged cable, all
forces and moments were equated for an incremental cable segment,
and temporal finite differences is used to get the numerical solution.
Park et al. (2003) also provided a discrete method of dynamics cal-
culation for towed low-tension cables. In his method, the cable was
actually discretized into a number of elements, the nonlinear gov-
erning equations were derived from force and moment balance ana-
lysis on these elements, and an implicit finite difference algorithm
was employed to solve 3D-cable equations. Grosenbaugh (2007)
examined the dynamic behavior of a towed cable system during ship
turning manoeuvers. The governing equations included the effects of
geometric and material nonlinearities and bending and torsional

stiffness for seamless modeling of slack cables (Gobat and Gro-
senbaugh, 2006). The equations were solved using an implicit finite
difference scheme.

Although marine risers are of low flexibility compared with cables,
they may take on large deflections in deepwater cases. Raman-nair
and Baddour (2003) formulated the equations of 3D dynamics of a
marine riser undergoing elastic deformations using Kane’s formalism.
The riser was modeled using lumped masses connected by exten-
sional and rotational springs. Hong (2004) provided a dynamics cal-
culation method based on numerical approximation of model func-
tions, in which complex integral and differential governing equations
of motion were derived from Hamilton’s Principle, and the numerical
solution of the equations was approximately got by model functions.
Chatjigeorgiou (2008) proposed a finite differences solution method
for the numerical treatment of the dynamic equilibrium problem of
2D catenary risers, and the method was based on the so-called Box
approximation. Chen et al. (2009) listed dynamics equation based on
Euler–Bernoulli beam theory, extracted natural frequencies and mode
shapes of marine risers by the method of differential transformation
and re-examined the natural frequencies of marine risers by the
method of variational iteration (Chen et al. 2015). Sun et al. (2011)
analyzed nonlinear dynamics of cable towed body system using a new
nodal position finite element method, which calculated the position of
the cable directly instead of the displacement by the finite element
method, and eliminated the need of decoupling the rigid-bodymotion
from the total motion.

In dynamics calculation, the slender body is often discretized
into a lot of elements. In most of the cases, the elements are
straight, but the straight elements are not propitious to accurately
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fit the configuration of slender bodies. Zhu and Meguid (2006)
introduced a new curved beam element to analyze low-tension
cables. His numerical results demonstrated superior accuracy and
high convergence rate of the developed curved beam element.

Xu et al. (2013) also proposed a Flexible Segment Model (FSM) for
underwater MSBs. In FSM, a slender body was discretized into a series
of flexible curved segments. For each flexible segment, its deflecting
feature and external forces were analyzed independently. The defor-
mation of the whole slender body was decomposed into micro-
deformations of all flexible segments. And the complex governing
equations were listed according to the moment equilibrium on these
segments. A linearization method was provided to get the numerical
solution to the governing equations. But the segment length and the
time interval would influence the stability of numerical calculation. If
the segment length was too small or the time interval was too large,
the numerical calculation might come up with the divergent results.
The reason of divergence in that case was that the errors in the lin-
earization iterations could be magnified gradually.

To improve the applicability and stability of FSM based linear-
ization method, this paper presents a robust dynamics calculation
method for underwater MSBs via FSM based optimization. In this
method, dynamics calculation is accomplished by minimizing the
mechanical equilibrium function instead of solving the governing
equations. The stability of FSM based optimization method is very
high, so we call it "robust".

The remaining sections is organized as follows: Section 2 intro-
duces FSM and deformation analysis of the MSB; Section 3 lists the
equations of mechanical equilibrium based on the deformation ana-
lysis; Section 4 presents the numerical calculation of the FSM based
optimization method; Section 5 presents the comparison between the
experimental and numerical results, and tests the stability and sensi-
tivity, error tolerance of numerical calculation of FSM based optimi-
zation method. Section 6 sums up the paper.

2. Flexible Segment Model (FSM)

The MSB can take on any shape, but to simplify the problem, it is
assumed to be in long cylinder shape if with no external load. In case
of being towed or moved by mother vessel, they may undergo a large
deformation. As shown in Fig.1(a), the MSB towed by the mother
vessel has a large bending deformation. In a common case, a bottom
object is attached to the lower end of the slender body. FSM is pro-
posed by Xu et al. 2013, as shown in Fig. 1(b) and (c). In Fig. 1(b), the

slender body is discretized into n flexible segments, marked as S1,
S2, …, Sn. At the ends of these flexible segments, there are nþ1 nodes
N1, …, Nn, Nnþ1. N1 is the upper end, connected with the mother
vessel. Nnþ1 is the lower end, connected with the bottom object. To
illustrate the deformation of the slender body, the segment Si is
magnified, although the real deformation of each segment is very
small. For Si, both ends are Ni and Niþ1, the midpoint is Ci, as shown in
Fig. 1(c).

Although the same FSM is adopted here, the dynamics calculation
method of this paper is quite different from Xu's method in 2013, in
which the underlying concept is "linearization". However in the
method of this paper, we emphasize the concept of "optimization".
Due to the difference of underline concepts, the fundamental equa-
tions of both methods are in different form. So Sections 2 and 3 will
list the fundamental equations necessary for FSM based optimization
method.

2.1. Coordinate systems

The global and local coordinate systems are shown in
Fig. 1(b) and (c). The global fixed coordinate system XYZ is set as X
and Y axes parallel to the horizontal plane, Z axis pointing to the
sea floor, and its origin at the initial position of the upper end of
slender body. If the upper end is moving, it will leave the origin.

At each node Ni, there is a local moving coordinate system biniti.
It is set as axis ti axial, axes bi and ni perpendicular to ti, and the
origin at Ni. In the same way, at the midpoint Ci, there is a local
coordinate system bc,inc,itc,i.

Assume the rotational transform from biniti to biþ1niþ1tiþ1 is car-
ried out as the following steps: (1) rotate n i,θ around axis ni; (2) then
rotate b i,θ around axis bi.

The rotational transform can be denoted by
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Fig. 1. FSM: (a) a MSB with large deformation, (b) FSM for the MSB, and (c) magnified deformation of Si .
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