Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Effect of strain rate and strain softening on embedment depth of a torpedo anchor in clay

Y.H. Kim¹, M.S. Hossain^{*}, D. Wang²

Centre for Offshore Foundation Systems (COFS), The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia

ARTICLE INFO

Received 3 November 2014

Accepted 29 July 2015

Strain rate dependency

Dynamic installation

Numerical modelling

Embedment depth

Article history:

Keywords: Torpedo anchors

Clay sensitivity

ABSTRACT

Torpedo anchors (of diameter ~ 1 m) are released from a height of 50–100 m from the seabed, achieving velocities up to 35 m/s at impacting the sediment. The strain rates induced in the surrounding soil by this dynamic installation is therefore significantly higher than those associated with installation of other offshore foundations and anchoring systems. The high strain rates enhance the mobilised undrained shear strength compared to that measured by in-situ penetrometer or laboratory tests. This paper reports the results from dynamic installation of a torpedo anchor in strain softening, rate dependent soft clays, quantifying the effects relative to results for ideal Tresca material. The three-dimensional dynamic large deformation finite element (LDFE) analyses were carried out using the coupled Eulerian-Lagrangian approach. The simple elastic-perfectly plastic Tresca soil model was modified to allow strain softening and strain rate dependency of the shear strength. Parametric analyses were undertaken varying the strain rate parameter, the sensitivity and ductility of the soil, and the soil undrained shear strength. Overall, embedment depth for rate dependent, strain softening clays lay below that for ideal Tresca material. Increased strain rate dependency of the soil led to marked reduction in embedment depth, only partly compensated by brittleness. Key results have been presented in the form of design charts, fitted by simple expressions to estimate the embedment depth of a torpedo anchor.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamically installed anchors (DIAs) are the most recent generation of anchoring systems for mooring floating facilities in deep waters. They have been identified as one of the most costeffective and promising concepts for future oil and gas development in the emerging frontiers. The anchor is released from a designed height above the seabed. This allows the anchor to gain velocity as it falls freely through the water column before impacting and embedding within the sediments.

The most commonly used DIAs are rocket-shaped, referred to as torpedo anchors, typically 12–17 m long and 0.8–1.2 m in diameter, with a dry weight (W_d) of 230–1150 kN, and may feature up to 4 fins at the trailing edge (see Fig. 1; Brandão et al., 2006). They are released from a height of 50–100 m from the seabed, achieving velocities up to 35 m/s. Challenges associated with dynamically penetrating anchors include prediction of the anchor

dong.wang@uwa.edu.au (D. Wang).

embedment depth and the subsequent capacity. The former is complicated by the very high strain rate (exceeding 25 s^{-1}) at the soil anchor interface, resulting from the high penetration velocities. There is general agreement that the undrained strength increases with increasing shear strain rate (e.g. Biscontin and Pestana, 2001; DeGroot et al., 2007; Lunne and Andersen, 2007; DeJong et al., 2012). Furthermore, natural soils also undergo softening as they are sheared and remoulded, with typical sensitivity values ranging from 2 to 5 for marine clays and 2 to 2.8 for reconstituted kaolin clay used widely in centrifuge tests (Kvalstad et al., 2001; Andersen and Jostad, 2004; Randolph, 2004; Menzies and Roper, 2008; Lunne et al., 2011; Gaudin et al., 2014).

The paper is a continuation of one that presents results from a parametric study: exploring the relevant range of parameters in terms of anchor length; diameter; tip angle; number, width and length of fins; impact velocity and soil undrained shear strength (Kim et al., 2015). In that paper, large deformation finite element (LDFE) analyses were carried out, accounting for the effect of strain rate and softening, but corresponding to a particular (kaolin) clay. In this study, the reverse was undertaken i.e. a typical torpedo anchor geometry and impact velocity were considered and parametric analyses were performed varying the soil sensitivity, brittleness and strain rate properties. The influence of these parameters on the proposed design expressions for anchor

^{*} Corresponding author. Tel.: +61 8 6488 7358; fax: +61 8 6488 1044. *E-mail addresses*: youngho.kim@uwa.edu.au (Y.H. Kim), muhammad.hossain@uwa.edu.au (M.S. Hossain),

¹ Tel.: $+61 \ 8 \ 6488 \ 4316$; fax: $+61 \ 8 \ 6488 \ 1044$.

² Tel.: +61 8 6488 3447; fax: +61 8 6488 1044.

http://dx.doi.org/10.1016/j.oceaneng.2015.07.067 0029-8018/© 2015 Elsevier Ltd. All rights reserved.

Nomenclature		Su	undrained shear strength
		$S_{u,bA}$	undrained shear strength at bottom of anchor shaft
A_A	anchor shaft cross-section area	$S_{u,bF}$	undrained shear strength at bottom of fins
A_{bF}	fins projected area	$S_{u,ref}$	reference undrained shear strength
A_p	anchor shaft and fins projected area	$S_{u,sA}$	average undrained shear strength over embedded
A_s	total surface area of anchor		length of shaft
A_{sA}	embedded anchor shaft surface area	$S_{u,sF}$	average undrained shear strength over embedded
A_{sF}	embedded fin surface area		length of fin
C_d	drag coefficient	$S_{u,tip}$	undrained shear strength at anchor tip level
D_A	anchor shaft diameter	Sum	undisturbed soil strength at mudline
D_p	anchor projected area equivalent diameter	S _{um,ref}	reference undisturbed soil strength at mulline
	(including fins)	t	time after anchor tip impacting seabed
d _{e,t}	installed anchor tip embedment depth	t_F	fin thickness
d_t	anchor tip penetration depth	ν	anchor penetration velocity
E_{total}	total energy during anchor penetration	v_i	anchor impact velocity
F_b	end bearing resistance	W_F	fin width
$F_{b,bA}$	end bearing resistance at base of anchor shaft	W_d	anchor dry weight
$F_{b,bF}$	end bearing resistance at base of anchor fins	W_s	anchor submerged weight in water
F_d	inertial drag resistance	Z	depth below soil surface
F_f	frictional resistance	α	interface friction ratio
F_{fA}	frictional resistance along shaft	β	shear-thinning index
F_{fF}	frictional resistance along fins	$\beta_{\rm tip}$	anchor tip angle
F_{γ}	buoyant weight of soil displaced by anchor (calculated	Δt	incremental time
	using effective unit weight of soil)	$\Delta \varepsilon_1$	cumulative major principal strain
g	earth's gravitational acceleration	$\Delta \varepsilon_3$	cumulative minor principal strain
k	shear strength gradient with depth	$\delta_{\rm rem}$	fully remoulded ratio
LA	anchor shaft length	γ	effective unit weight of soil
L_F	fin length	γ̈́ref	reference shear strain rate
L_T	anchor shaft tip length	Ŷ	shear strain rate
т	anchor mass	η	viscous property
m'	anchor effective mass	μ_c	Coulomb friction coefficient
$N_{c,bA}$	anchor tip bearing capacity factor	θ_0	pullout angle at mudline
$N_{c,bF}$	fin bearing capacity factor	θ_a	pullout angle at padeye
п	factor relating operative shear strain rate to normal-	ρ_s	submerged soll density
	ised velocity	$\tau_{\rm max}$	limiting shear strength at soil-anchor interface
R_a	average strain rate coefficient for embedment	ξ	cumulative plastic shear strain
_	prediction	ζa	average cumulative plastic shear strain for embed-
R_b	average strain rate coefficient for energy method	6	ment prediction
R_{f1}	factor related to effect of strain rate and softening for	ζb	average cumulative plastic shear strain for
	end bearing resistance	5	energy method
R_{f2}	factor related to effect of strain rate and softening for	\$ 95	cumulative plastic snear strain required for 95%
	trictional resistance		remoulding
S_t	soil sensitivity		

embedment depth was quantified. Analyses were also conducted simulating ideal Tresca, i.e. rate independent and non-softening, material for comparison.

Extensive background information to installation of torpedo anchors can be found in Hossain et al. (2014, 2015) and Kim et al. (2015), which are not repeated here. For convenience, Figs. 1 and 2 from Kim et al. (2015) are used here, showing a typical anchor geometry defining the nomenclature adopted for the problem and typical mesh details respectively.

2. Numerical analysis

2.1. Geometry and parameters

This study has considered a torpedo anchor, consisting of a circular shaft attached with 4 rectangular fins, penetrating dynamically into a soft non-homogeneous clay deposit as illustrated schematically in Fig. 1, where the mudline strength *s*_{um}, increases

linearly with depth *z*, with a gradient *k*. The soil average effective unit weight is γ' . The anchor shaft diameter is D_A of 1.07 m, shaft length L_A of 17 m (including tip length, L_T), fin length L_F of 10 m ($=L_{F1}+L_{F2}+L_{F3}$) and fin width w_F of 0.9 m. Analyses were undertaken for anchors with a 30° conical tip ($\beta_{tip}=30^\circ$). The shape was chosen similar to the T-98 anchor in the field, as illustrated by Medeiros (2002), de Araujo et al. (2004) and Brandão et al. (2006).

2.2. Analysis details

3D LDFE analyses were carried out using the coupled Eulerian– Lagrangian (CEL) approach in the commercial package ABAQUS/ Explicit (Dassault Systemes, 2011). To reduce the computational effort, the anchor dynamic installation was modelled from the soil surface, with a given velocity v_i .

Considering the symmetry of the problem, only a quarter anchor and soil were modelled. The radius and height of the soil domain were $40D_A$ ($\sim 32D_p$ for 4-fin anchor) and $\sim 8L_A$, respectively, to ensure that the soil extensions are sufficiently large to

Download English Version:

https://daneshyari.com/en/article/8065453

Download Persian Version:

https://daneshyari.com/article/8065453

Daneshyari.com