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a  b  s  t  r  a  c  t

According  to the  Taylor  tool  life  equation,  tool  life  reduces  with  increasing  cutting  speed  following  a
power  law.  Additional  factors  can  also  be added,  such  as  the  feed  rate,  in Taylor-type  models.  Although
these  models  are  posed  as  deterministic  equations,  there  is  inherent  uncertainty  in  the empirical
constants  and  tool  life  is  generally  considered  a stochastic  process.  In  this  work,  Bayesian  inference
is  applied  to  estimate  model  constants  for  both  milling  and  turning  operations  while  considering
uncertainty.

In  Part  1  of  the  paper,  a Taylor  tool  life  model  for  milling  that  uses  an  exponent,  n,  and  a  constant,
C,  is  developed.  Bayesian  inference  is applied  to  estimate  the  two  model  constants  using  a  discrete  grid
method.  Tool  wear  tests  are  performed  using  an  uncoated  carbide  tool  and  1018  steel  work  material.
Test  results  are  used  to  update  initial  beliefs  about  the  constants  and  the  updated  beliefs  are  then  used
to  predict  tool  life  using  a probability  density  function.  In  Part  2, an extended  form  of  the Taylor  tool
life  equation  is  implemented  that  includes  the  dependence  on  both  cutting  speed  and  feed  for  a  turning
operation.  The  dependence  on  cutting  speed  is  quantified  by  an exponent,  p,  and  the  dependence  on  feed
by an  exponent,  q; the  model  also  includes  a constant,  C.  Bayesian  inference  is applied  to  estimate  these
constants  using  the  Metropolis–Hastings  algorithm  of  the  Markov  Chain  Monte  Carlo  (MCMC)  approach.
Turning  tests  are  performed  using  a carbide  tool  and  MS309  steel  work  material.  The  test  results  are
again  used  to  update  initial  beliefs  about  the  Taylor  tool  life  constants  and  the  updated  beliefs  are  used
to predict  tool  life  via  a  probability  density  function.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Tool wear can impose a significant limitation on machining pro-
cesses, particularly for hard-to-machine materials such as titanium
and nickel-based superalloys. Taylor first defined an empirical rela-
tionship between tool life and cutting speed using a power law [1]:

VTn = C (1)

where V is the cutting speed in m/min, T is the tool life in minutes,
and n and C are constants which depend on the tool–workpiece
combination. The constant C is defined as the cutting speed required
to obtain a tool life of 1 min. Tool life is typically defined as the
time required to reach a predetermined flank wear width (FWW),
although other wear features (such as crater depth) may  also be
applied depending on the nature of the tool wear. The Taylor tool
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life equation can be extended to include other effects, such as feed
rate [2]:

Vpf q
r T = C (2)

where fr is the feed in mm/rev in turning and C, p, and q are
constants which depend on the tool–workpiece combination. Note
that in the extended Taylor tool life equation shown in Eq. (2), the
constant C is dimensionless. The Taylor-type tool life model shown
in Eq. (2) is deterministic in nature, but uncertainty exists due to: (1)
factors that are unknown or not included in the model; and (2) tool-
to-tool performance variation. For these reasons, tool wear is often
considered to be a stochastic and complex process and, therefore,
difficult to predict.

Previous efforts to model tool wear as a stochastic process are
available in the literature [3–5]. Vagnorius et al. calculated the opti-
mal  tool replacement time by determining the probability of the
tool failing before the selected time using a tool reliability function
[3]. Liu and Makis derived a recursive formula to determine the
cutting tool reliability. The maximum likelihood method was  used
to determine the unknown parameters in the reliability function
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[4]. Wiklund applied the Bayesian approach to monitor tool wear
using in-process information [5]. The method presented in this
paper uses Bayesian inference to predict tool life at the process
planning stage. The distribution of the Taylor tool life constants,
p, q, and C, are updated using experimental tool life results. The
updated distributions of p, q, and C can then be used to predict tool
life. The objective of the paper is to demonstrate the application of
Bayesian updating to tool life prediction. The Taylor tool life model
is used in this study, despite its potential limitations, because it is
well-known and generally understood in the manufacturing com-
munity. Without loss of generality, the Bayesian updating method
demonstrated in this paper can be applied to other available models
[6].

2. Bayesian inference

Bayesian inference, which forms a normative and rational
method for belief updating is applied in this work [7]. Let the prior
distribution about an uncertain event, A, at a state of information, &,
be {A|&}, the likelihood of obtaining an experimental result B given
that event A occurred be {B|A,&}, and the probability of receiving
experimental result B (without knowing A has occurred) be {B|&}.
Bayes’ rule is used to determine the posterior belief about event A
after observing the experiment results, {A|B,&} as shown in Eq. (3).
Using Bayes’ rule, information gained through experimentation can
be combined with the prior prediction about the event to obtain a
posterior distribution.

{A|B, &} = {A|&}{B|A, &}
{B|&} (3)

As seen in Eq. (2), the Taylor-type tool life model assigns a deter-
ministic value to tool life for the selected cutting speed and feed
rate values. In contrast, Bayesian inference assigns a probability
distribution to the tool life value at a particular cutting speed/feed
rate combination. From a Bayesian standpoint, a variable which is
uncertain is treated as a variable which is random and characterized
by a probability distribution. The prior, or initial belief of the user,
can be based on theoretical considerations, expert opinions, past
experience, or data reported in the literature; the prior should be
chosen to be as informative as possible. The prior is represented as a
probability distribution and, using Bayes’ theorem, the probability
distribution is updated when new information becomes available
(from experiments, for example). As a result, Bayesian inference
enables a model to incorporate uncertainty in terms of a probabil-
ity distribution and beliefs about this distribution to be updated
based on experimental results.

In the Taylor-type tool life model provided in Eq. (2), there is
uncertainty in the exponents, p and q, and in the constant, C. As
a result, there is uncertainty in the tool life, T. This uncertainty
can be represented as a joint probability distribution for C, p, and
q and, therefore, for the tool life, T. Bayes’ rule (Eq. (3)) can be
used to update the prior joint distribution of C, p, and q using new
information. The new distribution can then be used to update the
distribution of tool life, T. In this case, the prior distribution {A|&}
is the initial belief about constants C, p, and q. The updating of the
constants can be completed using experimental data of tool life. For
this case, Bayes’ rule is:

{p, q, C|T, &} ∝ {p, q, C|&}{T |p, q, C, &} (4)

where {p, q, C|&} is the prior joint distribution of p, q, and C, {T|p, q,
C,&} is the likelihood of observing experimental result of tool life, T,
given C, p, and q, and {p, q, C|T,&} is the posterior joint distribution
of C, p, and q given an experimental result of tool life, T. Note that
the denominator in Eq. (3), {B|&}, acts as a normalizing constant. It
is not included in Eq. (4).

According to Bayes’ rule, the posterior distribution is propor-
tional to the product of the prior and the likelihood. The prior
is a three-dimensional joint distribution of the constants C, p,
and q. The likelihood and, subsequently, the posterior are also
three-dimensional joint distributions of C, p, and q. The grid-based
method (see Part 1 of this paper) is computationally expensive for
updating a joint distribution with three or more dimensions since it
is dependent on the size of the grid. For example, a joint probability
density function (pdf) of three variables with a grid size equal to 300
would require at least 2.7 × 106 computations for each update in
the grid-based method. As an alternative, the Markov Chain Monte
Carlo (MCMC) technique can be used to sample from multivariate
posterior distributions for Bayesian inference [7]. Using the MCMC
technique, samples can be drawn from the posterior multivariate
distribution which can then be used to characterize the distribu-
tion. The single-component Metropolis–Hastings (MH) algorithm
facilitates sampling from multivariate distributions without sensi-
tivity to the number of variables [9,10]. The algorithm proceeds by
considering a single variable at a time and sampling from a uni-
variate proposal distribution. In this study, the single-component
MH algorithm of the MCMC  technique is used to sample from the
joint posterior distribution of the constants C, p, and q. The remain-
der of the paper is organized as follows. Section 3 describes the
use of the MH  algorithm to sample from a univariate bimodal
pdf and the application to Bayesian inference. Section 4 describes
sampling from the joint posterior distribution using the single com-
ponent MH  algorithm. Tool life prediction using the posterior or
the updated distributions of tool life is shown in Section 5. Section
6 compares the Bayesian approach to classical regression. Finally,
the influence of prior and likelihood uncertainty is discussed in
Section 7.

3. Markov chain Monte Carlo (MCMC) method

The Markov Chain Monte Carlo (MCMC) method is a sampling
technique used to draw samples from a pdf. Samples are gen-
erated from the state space of the variable of interest using a
Markov chain mechanism [8]. The most popular method for MCMC
is the MH  algorithm [9,10]. Let x be the variable of interest. The
pdf of variable x is referred to as the target distribution and is
denoted by p(x). The MH  algorithm uses a proposal distribution
(pdf) denoted as q(x). A candidate sample, x*, drawn from the pro-
posal distribution is either accepted or rejected depending on an
acceptance ratio, A. In each iteration, the Markov chain moves to
x* if the sample is accepted. Otherwise, the chain remains at the
current value of x. The algorithm proceeds for N − 1 iterations to
obtain N samples from the target distribution using the following
steps.

1. Initialize the starting point x0.
2. For N − 1 iterations, complete the following four steps:

a. draw a sample, x*, from the proposal distribution; the pdf
value is q(x*|xi), where i denotes the current iteration and the
distribution mean is xi with a selected standard deviation

b. sample u from a uniform distribution with a lower limit of
zero and an upper limit of 1, U(0, 1)

c. compute the acceptance ratio, A = min(1,
(p(x*)q(xi|x*)/p(xi)q(x*|xi))), where q(xi|x*) is the pdf value
of the proposal distribution at xi given a mean of x* with
the selected standard deviation, p(x*) is the pdf value of the
target distribution at x*, and p(xi) is the pdf value of the target
distribution at xi

d. if u < A, then set the new value of x equal to the new sample,
xi+1 = x*; otherwise, the value of x remains unchanged, xi+1 = xi.
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